Department of Brain Sciences, Imperial College London, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
Department of Brain Sciences, Imperial College London, UK; UK Dementia Research Institute, Imperial College London, UK.
Brain Stimul. 2022 Sep-Oct;15(5):1236-1245. doi: 10.1016/j.brs.2022.08.022. Epub 2022 Sep 5.
Transcranial ultrasound stimulation (TUS) holds promise as a novel technology for non-invasive neuromodulation, with greater spatial precision than other available methods and the ability to target deep brain structures. However, its safety and efficacy for behavioural and electrophysiological modulation remains controversial and it is not yet clear whether it can be used to manipulate the neural mechanisms supporting higher cognitive function in humans. Moreover, concerns have been raised about a potential TUS-induced auditory confound.
We aimed to investigate whether TUS can be used to modulate higher-order visual function in humans in an anatomically-specific way whilst controlling for auditory confounds.
We used participant-specific skull maps, functional localisation of brain targets, acoustic modelling and neuronavigation to guide TUS delivery to human visual motion processing cortex (hMT+) whilst participants performed a visual motion detection task. We compared the effects of hMT+ stimulation with sham and control site stimulation and examined EEG data for modulation of task-specific event-related potentials. An auditory mask was applied which prevented participants from distinguishing between stimulation and sham trials.
Compared with sham and control site stimulation, TUS to hMT+ improved accuracy and reduced response times of visual motion detection. TUS also led to modulation of the task-specific event-related EEG potential. The amplitude of this modulation correlated with the performance benefit induced by TUS. No pathological changes were observed comparing structural MRI obtained before and after stimulation.
The results demonstrate for the first time the precision, efficacy and safety of TUS for stimulation of higher-order cortex and cognitive function in humans whilst controlling for auditory confounds.
经颅超声刺激(TUS)作为一种新的非侵入性神经调节技术具有很大的应用前景,其空间精度优于其他现有方法,并且能够靶向深部脑结构。然而,其在行为和电生理调节方面的安全性和有效性仍存在争议,目前尚不清楚它是否可以用于操纵支持人类更高认知功能的神经机制。此外,人们对 TUS 可能引起的听觉混淆表示担忧。
我们旨在研究 TUS 是否可以用于以特定于解剖结构的方式调节人类的高级视觉功能,同时控制听觉混淆。
我们使用特定于参与者的颅骨图、大脑目标的功能定位、声学建模和神经导航来指导 TUS 传递到人类视觉运动处理皮层(hMT+),同时参与者执行视觉运动检测任务。我们将 hMT+刺激与假刺激和对照部位刺激的效果进行了比较,并检查了脑电图数据以调节特定于任务的事件相关电位。应用听觉掩蔽,防止参与者区分刺激和假刺激试验。
与假刺激和对照部位刺激相比,TUS 刺激 hMT+可提高视觉运动检测的准确性和减少反应时间。TUS 还导致任务特异性事件相关 EEG 电位的调制。这种调制的幅度与 TUS 诱导的性能获益相关。比较刺激前后获得的结构 MRI,未观察到任何结构变化。
这些结果首次证明了 TUS 在控制听觉混淆的情况下,用于刺激人类高级皮层和认知功能的精确性、有效性和安全性。