Suppr超能文献

在 tracrRNA 序列中考虑微小变化可提高 sgRNA 活性预测用于 CRISPR 筛选。

Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening.

机构信息

Genetic Perturbation Platform, Broad Institute of MIT and Harvard, 75 Ames St, Cambridge, MA, USA.

Arbor Biotechnologies, Cambridge, MA, USA.

出版信息

Nat Commun. 2022 Sep 6;13(1):5255. doi: 10.1038/s41467-022-33024-2.

Abstract

CRISPR technology is a powerful tool for studying genome function. To aid in picking sgRNAs that have maximal efficacy against a target of interest from many possible options, several groups have developed models that predict sgRNA on-target activity. Although multiple tracrRNA variants are commonly used for screening, no existing models account for this feature when nominating sgRNAs. Here we develop an on-target model, Rule Set 3, that makes optimal predictions for multiple tracrRNA variants. We validate Rule Set 3 on a new dataset of sgRNAs tiling essential and non-essential genes, demonstrating substantial improvement over prior prediction models. By analyzing the differences in sgRNA activity between tracrRNA variants, we show that Pol III transcription termination is a strong determinant of sgRNA activity. We expect these results to improve the performance of CRISPR screening and inform future research on tracrRNA engineering and sgRNA modeling.

摘要

CRISPR 技术是研究基因组功能的强大工具。为了帮助从众多可能的选择中挑选出针对目标具有最大功效的 sgRNA,有几个小组开发了预测 sgRNA 靶活性的模型。尽管通常使用多种 tracrRNA 变体进行筛选,但在提名 sgRNA 时,没有现有的模型考虑到这一特性。在这里,我们开发了一种针对靶的模型,规则集 3,该模型可以对多种 tracrRNA 变体进行最佳预测。我们在一个新的 sgRNA 靶向必需和非必需基因的数据集上验证了 Rule Set 3,该模型在之前的预测模型基础上有了显著的改进。通过分析 tracrRNA 变体之间 sgRNA 活性的差异,我们表明 Pol III 转录终止是 sgRNA 活性的一个重要决定因素。我们希望这些结果能够提高 CRISPR 筛选的性能,并为未来的 tracrRNA 工程和 sgRNA 建模研究提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f9/9448816/4da6ac6e4274/41467_2022_33024_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验