Pathology and Histology Department Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain.
Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.
Methods Mol Biol. 2022;2547:165-185. doi: 10.1007/978-1-0716-2573-6_7.
The good clinical results of immune checkpoint inhibitors (ICIs) in recent cancer therapy and the success of RNA vaccines against SARS-nCoV2 have provided important lessons to the scientific community. On the one hand, the efficacy of ICI depends on the number and immunogenicity of tumor neoantigens (TNAs) which unfortunately are not abundantly expressed in many cancer subtypes. On the other hand, novel RNA vaccines have significantly improved both the stability and immunogenicity of mRNA and its efficient delivery, this way overcoming past technique limitations and also allowing a quick vaccine development at the same time. These two facts together have triggered a resurgence of therapeutic cancer vaccines which can be designed to include individual TNAs and be synthesized in a timeframe short enough to be suitable for the tailored treatment of a given cancer patient.In this chapter, we explain the pipeline for the synthesis of TNA-carrying RNA vaccines which encompasses several steps such as individual tumor next-generation sequencing (NGS), selection of immunogenic TNAs, nucleic acid synthesis, drug delivery systems, and immunogenicity assessment, all of each step comprising different alternatives and variations which will be discussed.
免疫检查点抑制剂(ICIs)在最近癌症治疗中的良好临床结果和 SARS-nCoV2 的 RNA 疫苗的成功为科学界提供了重要的经验教训。一方面,ICI 的疗效取决于肿瘤新生抗原(TNA)的数量和免疫原性,而不幸的是,许多癌症亚型中 TNA 的表达并不丰富。另一方面,新型 RNA 疫苗显著提高了 mRNA 的稳定性和免疫原性,以及其有效的递呈方式,从而克服了过去的技术限制,同时也允许快速开发疫苗。这两个事实共同引发了治疗性癌症疫苗的复兴,这些疫苗可以设计为包含个体 TNA,并在足够短的时间内合成,以适用于特定癌症患者的个体化治疗。在本章中,我们解释了携带 TNA 的 RNA 疫苗的合成途径,其中包括几个步骤,如个体肿瘤下一代测序(NGS)、免疫原性 TNA 的选择、核酸合成、药物递送系统和免疫原性评估,每个步骤都包含不同的替代方案和变化,这些将在讨论中进行说明。