Suppr超能文献

基于硫代磷酸酯的大 RNA 结构与动态研究的位点特异性标记。

Phosphorothioate-Based Site-Specific Labeling of Large RNAs for Structural and Dynamic Studies.

机构信息

Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

出版信息

ACS Chem Biol. 2022 Sep 16;17(9):2448-2460. doi: 10.1021/acschembio.2c00199. Epub 2022 Sep 7.

Abstract

Pulsed electron-electron double resonance (PELDOR) spectroscopy, X-ray scattering interferometry (XSI), and single-molecule Förster resonance energy transfer (smFRET) are molecular rulers that provide inter- or intramolecular pair-wise distance distributions in the nanometer range, thus being ideally suitable for structural and dynamic studies of biomolecules including RNAs. The prerequisite for such applications requires site-specific labeling of biomolecules with spin labels, gold nanoparticles, and fluorescent tags, respectively. Recently, site-specific labeling of large RNAs has been achieved by a combination of transcription of an expanded genetic alphabet containing A-T/G-C base pairs and NaM-TPT3 unnatural base pair (UBP) with post-transcriptional modifications at UBP bases by click chemistry or amine-NHS ester reactions. However, due to the bulky sizes of functional groups or labeling probes used, such strategies might cause structural perturbation and decrease the accuracy of distance measurements. Here, we synthesize an α-thiophosphorylated variant of rTPT3TP (rTPT3), which allows for post-transcriptional site-specific labeling of large RNAs at the internal α-phosphate backbone via maleimide-modified probes. Subsequent PELDOR, XSI, and smFRET measurements result in narrower distance distributions than labeling at the TPT3 base. The presented strategy provides a new route to empower the molecular rulers for structural and dynamic studies of large RNA and its complex.

摘要

脉冲电子-电子双共振(PELDOR)光谱学、X 射线散射干涉测量(XSI)和单分子Förster 共振能量转移(smFRET)是分子标尺,可提供纳米范围内的分子间或分子内成对距离分布,因此非常适合包括 RNA 在内的生物分子的结构和动态研究。这种应用的前提是需要分别使用自旋标记、金纳米颗粒和荧光标记物对生物分子进行特异性位点标记。最近,通过包含 A-T/G-C 碱基对的扩展遗传密码子的转录以及 NaM-TPT3 非天然碱基对(UBP)与点击化学或胺-NHS 酯反应在 UBP 碱基上的转录后修饰相结合,实现了大 RNA 的特异性位点标记。然而,由于使用的功能基团或标记探针的体积较大,这些策略可能会导致结构扰动并降低距离测量的准确性。在这里,我们合成了 rTPT3TP(rTPT3)的α-硫代磷酸化变体,该变体可通过马来酰亚胺修饰的探针在内部α-磷酸骨架上进行转录后特异性标记大 RNA。随后的 PELDOR、XSI 和 smFRET 测量结果表明,与 TPT3 碱基标记相比,距离分布更窄。所提出的策略为大 RNA 及其复合物的结构和动态研究提供了一种新的途径,赋予了这些分子标尺新的能力。

相似文献

7
Chemical Dual End-Labeling of Large Ribozymes.化学双端标记大型核酶。
Methods Mol Biol. 2022;2439:191-204. doi: 10.1007/978-1-0716-2047-2_13.

本文引用的文献

2
Sulfur modification in natural RNA and therapeutic oligonucleotides.天然RNA和治疗性寡核苷酸中的硫修饰。
RSC Chem Biol. 2021 Apr 27;2(4):990-1003. doi: 10.1039/d1cb00038a. eCollection 2021 Aug 5.
3
Strategies for Covalent Labeling of Long RNAs.长 RNA 的共价标记策略。
Chembiochem. 2021 Oct 1;22(19):2826-2847. doi: 10.1002/cbic.202100161. Epub 2021 Jun 17.
4
Antisense technology: an overview and prospectus.反义技术:概述与展望。
Nat Rev Drug Discov. 2021 Jun;20(6):427-453. doi: 10.1038/s41573-021-00162-z. Epub 2021 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验