School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China.
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
Anal Chem. 2022 Sep 20;94(37):12762-12771. doi: 10.1021/acs.analchem.2c02419. Epub 2022 Sep 7.
The expression of human epidermal growth factor receptor-2 (HER2) has important implications for pathogenesis, progression, and therapeutic efficacy of breast cancer. The detection of its variation during the treatment is crucial for therapeutic decision-making but remains a grand challenge, especially at the cellular level. Here, we develop a machine learning-driven surface-enhanced Raman spectroscopy (SERS)-integrated strategy for label-free detection of cellular HER2. Specifically, our method allows the extraction of cell-rich spectral signatures utilized for identification and classification of cancer cells with distinct HER2 expression with a high accuracy of 99.6%. By combining label-free SERS detection and machine learning-driven chemometric analysis, we are able to perform longitudinal monitoring of therapeutic efficacy at the cellular level during the treatment of HER2+ breast cancer, which aids in the subsequent decision-making and management. This work provides a promising technique capable of performing dynamic label-free spectroscopic detection for therapeutic surveillance of diseases.
人类表皮生长因子受体 2(HER2)的表达对乳腺癌的发病机制、进展和治疗效果有重要影响。在治疗过程中检测其变化对于治疗决策至关重要,但仍然是一个巨大的挑战,特别是在细胞水平上。在这里,我们开发了一种基于机器学习的表面增强拉曼光谱(SERS)集成策略,用于无标记检测细胞 HER2。具体来说,我们的方法允许提取富含细胞的光谱特征,用于识别和分类具有不同 HER2 表达的癌细胞,准确率高达 99.6%。通过结合无标记 SERS 检测和基于机器学习的化学计量学分析,我们能够在治疗 HER2+乳腺癌期间在细胞水平上进行治疗效果的纵向监测,这有助于随后的决策和管理。这项工作提供了一种有前途的技术,能够进行动态无标记光谱检测,用于疾病的治疗监测。