Anterior Segment and Refractive Surgery Department, Rothschild Foundation Hospital, Paris, France.
Transl Vis Sci Technol. 2022 Sep 1;11(9):5. doi: 10.1167/tvst.11.9.5.
To ascertain the theoretical impact of anatomical variations in the effective lens position (ELP) of the intraocular lens (IOL) in a thick lens eye model. The impact of optimization of IOL power formulas based on a single lens constant was also simulated.
A schematic eye model was designed and manipulated to reflect changes in the ELP while keeping the optical design of the IOL unchanged. Corresponding relationships among variations in ELP, postoperative spherical equivalent refraction, and required IOL power adjustment to attain target refractions were computed for differing corneal powers (38 diopters [D], 43 D, and 48 D) with IOL power ranging from 1 to 35 D.
The change in ELP required to compensate for various systematic biases increased dramatically with low-power IOLs (less than 10 D) and was proportional to the magnitude of the change in refraction. The theoretical impact of the variation in ELP on postoperative refraction was nonlinear and highly dependent on the optical power of the IOL. The concomitant variations in IOL power and refraction at the spectacle plane, induced by varying the ELP, were linearly related. The influence of the corneal power was minimal.
The consequences of variations in the lens constant mainly concern eyes receiving high-power IOLs. The compensation of a systematic bias by a constant increment of the ELP may induce a nonsystematic modification of the predicted IOL power, according to the biometric characteristics of the eyes studied.
Optimizing IOL power formulas by altering the ELP may induce nonsystematic modification of the predicted IOL power.
确定厚透镜眼模型中人工晶状体(IOL)有效透镜位置(ELP)的解剖学变化对理论的影响。还模拟了基于单个透镜常数优化 IOL 功率公式的影响。
设计并操作了一个模型眼,以在保持 IOL 光学设计不变的情况下反映 ELP 的变化。计算了不同角膜屈光度(38 屈光度[D]、43 D 和 48 D)和 IOL 功率范围为 1 至 35 D 时,ELP 变化与术后球镜等效屈光度和达到目标屈光度所需的 IOL 功率调整之间的对应关系。
补偿各种系统偏差所需的 ELP 变化随着低功率 IOL(小于 10 D)的增加而急剧增加,并且与屈光度变化的幅度成正比。ELP 变化对术后屈光度的理论影响是非线性的,高度依赖于 IOL 的光功率。由于 ELP 变化引起的 IOL 功率和在眼镜平面上的屈光度的伴随变化呈线性关系。角膜屈光度的影响最小。
透镜常数的变化后果主要涉及接受高功率 IOL 的眼睛。通过 ELP 的恒定增量补偿系统偏差可能会根据所研究的眼睛的生物测量特征,对预测的 IOL 功率进行非系统性修改。
确定厚透镜眼模型中人工晶状体(IOL)有效透镜位置(ELP)的解剖学变化对理论的影响。还模拟了基于单个透镜常数优化 IOL 功率公式的影响。
设计并操作了一个模型眼,以在保持 IOL 光学设计不变的情况下反映 ELP 的变化。计算了不同角膜屈光度(38 屈光度[D]、43 D 和 48 D)和 IOL 功率范围为 1 至 35 D 时,ELP 变化与术后球镜等效屈光度和达到目标屈光度所需的 IOL 功率调整之间的对应关系。
补偿各种系统偏差所需的 ELP 变化随着低功率 IOL(小于 10 D)的增加而急剧增加,并且与屈光度变化的幅度成正比。ELP 变化对术后屈光度的理论影响是非线性的,高度依赖于 IOL 的光功率。由于 ELP 变化引起的 IOL 功率和在眼镜平面上的屈光度的伴随变化呈线性关系。角膜屈光度的影响最小。
透镜常数的变化后果主要涉及接受高功率 IOL 的眼睛。通过 ELP 的恒定增量补偿系统偏差可能会根据所研究的眼睛的生物测量特征,对预测的 IOL 功率进行非系统性修改。