School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia.
Department of Computer Science and Information Technology, University of Chenab, Gujrat, Pakistan.
PLoS One. 2022 Sep 7;17(9):e0274172. doi: 10.1371/journal.pone.0274172. eCollection 2022.
The continued urbanization poses several challenges for law enforcement agencies to ensure a safe and secure environment. Countries are spending a substantial amount of their budgets to control and prevent crime. However, limited efforts have been made in the crime prediction area due to the deficiency of spatiotemporal crime data. Several machine learning, deep learning, and time series analysis techniques are exploited, but accuracy issues prevail. Thus, this study proposed a Bidirectional Long Short Term Memory (Bi-LSTM) and Exponential Smoothing (ES) hybrid for crime forecasting. The proposed technique is evaluated using New York City crime data from 2010-2017. The proposed approach outperformed as compared to state-of-the-art Seasonal Autoregressive Integrated Moving Averages (SARIMA) with low Mean Absolute Percentage Error (MAPE) (0.3738, 0.3891, 0.3433,0.3964), Root Mean Square Error (RMSE)(13.146, 13.669, 13.104, 13.77), and Mean Absolute Error (MAE) (9.837, 10.896, 10.598, 10.721). Therefore, the proposed technique can help law enforcement agencies to prevent and control crime by forecasting crime patterns.
持续的城市化给执法机构带来了若干挑战,需要确保安全和有保障的环境。各国在控制和预防犯罪方面投入了大量预算。然而,由于时空犯罪数据的缺乏,犯罪预测领域的工作有限。已经利用了几种机器学习、深度学习和时间序列分析技术,但准确率问题仍然存在。因此,本研究提出了一种用于犯罪预测的双向长短时记忆 (Bi-LSTM) 和指数平滑 (ES) 混合模型。使用 2010-2017 年纽约市犯罪数据对所提出的方法进行了评估。与最先进的季节性自回归综合移动平均线 (SARIMA) 相比,所提出的方法表现更好,具有较低的平均绝对百分比误差 (MAPE)(0.3738、0.3891、0.3433、0.3964)、均方根误差 (RMSE)(13.146、13.669、13.104、13.77)和平均绝对误差 (MAE)(9.837、10.896、10.598、10.721)。因此,该技术可以帮助执法机构通过预测犯罪模式来预防和控制犯罪。