Suppr超能文献

GANscan:使用深度学习去模糊的连续扫描显微镜技术。

GANscan: continuous scanning microscopy using deep learning deblurring.

作者信息

Fanous Michael John, Popescu Gabriel

机构信息

Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.

Department of Bioengineering, University of Illinois at Urbana-Champaign, 306 N. Wright Street, Urbana, IL, 61801, USA.

出版信息

Light Sci Appl. 2022 Sep 7;11(1):265. doi: 10.1038/s41377-022-00952-z.

Abstract

Most whole slide imaging (WSI) systems today rely on the "stop-and-stare" approach, where, at each field of view, the scanning stage is brought to a complete stop before the camera snaps a picture. This procedure ensures that each image is free of motion blur, which comes at the expense of long acquisition times. In order to speed up the acquisition process, especially for large scanning areas, such as pathology slides, we developed an acquisition method in which the data is acquired continuously while the stage is moving at high speeds. Using generative adversarial networks (GANs), we demonstrate this ultra-fast imaging approach, referred to as GANscan, which restores sharp images from motion blurred videos. GANscan allows us to complete image acquisitions at 30x the throughput of stop-and-stare systems. This method is implemented on a Zeiss Axio Observer Z1 microscope, requires no specialized hardware, and accomplishes successful reconstructions at stage speeds of up to 5000 μm/s. We validate the proposed method by imaging H&E stained tissue sections. Our method not only retrieves crisp images from fast, continuous scans, but also adjusts for defocusing that occurs during scanning within +/- 5 μm. Using a consumer GPU, the inference runs at <20 ms/ image.

摘要

如今,大多数全玻片成像(WSI)系统都依赖于“停驻凝视”方法,即在每个视野处,扫描平台完全停止后相机才拍摄照片。这一过程确保每张图像都没有运动模糊,但代价是采集时间较长。为了加快采集过程,特别是对于大扫描区域,如病理切片,我们开发了一种采集方法,在平台高速移动时连续采集数据。利用生成对抗网络(GAN),我们展示了这种超快速成像方法,称为GANscan,它能从运动模糊的视频中恢复清晰图像。GANscan使我们能够以比“停驻凝视”系统快30倍的吞吐量完成图像采集。该方法在蔡司Axio Observer Z1显微镜上实现,无需专门硬件,并且在平台速度高达5000μm/s时能成功重建图像。我们通过对苏木精-伊红(H&E)染色的组织切片成像来验证所提出的方法。我们的方法不仅能从快速、连续扫描中获取清晰图像,还能校正扫描过程中发生的±5μm范围内的失焦。使用消费级GPU,推理速度小于20ms/图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f00/9452654/310d1a328bce/41377_2022_952_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验