Suppr超能文献

使用具有计算特异性的相成像技术(PICS)对脑组织髓鞘含量进行无标记筛选。

Label-free screening of brain tissue myelin content using phase imaging with computational specificity (PICS).

作者信息

Fanous Michael, Shi Chuqiao, Caputo Megan P, Rund Laurie A, Johnson Rodney W, Das Tapas, Kuchan Matthew J, Sobh Nahil, Popescu Gabriel

机构信息

Quantitative Light Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

APL Photonics. 2021 Jul 1;6(7):076103. doi: 10.1063/5.0050889. Epub 2021 Jul 12.

Abstract

Inadequate myelination in the central nervous system is associated with neurodevelopmental complications. Thus, quantitative, high spatial resolution measurements of myelin levels are highly desirable. We used spatial light interference microcopy (SLIM), a highly sensitive quantitative phase imaging (QPI) technique, to correlate the dry mass content of myelin in piglet brain tissue with dietary changes and gestational size. We combined SLIM micrographs with an artificial intelligence (AI) classifying model that allows us to discern subtle disparities in myelin distributions with high accuracy. This concept of combining QPI label-free data with AI for the purpose of extracting molecular specificity has recently been introduced by our laboratory as phase imaging with computational specificity. Training on 8000 SLIM images of piglet brain tissue with the 71-layer transfer learning model Xception, we created a two-parameter classification to differentiate gestational size and diet type with an accuracy of 82% and 80%, respectively. To our knowledge, this type of evaluation is impossible to perform by an expert pathologist or other techniques.

摘要

中枢神经系统髓鞘形成不足与神经发育并发症相关。因此,非常需要对髓鞘水平进行定量、高空间分辨率的测量。我们使用空间光干涉显微镜(SLIM),一种高度灵敏的定量相位成像(QPI)技术,将仔猪脑组织中髓鞘的干质量含量与饮食变化和孕期大小相关联。我们将SLIM显微照片与人工智能(AI)分类模型相结合,该模型使我们能够高精度地辨别髓鞘分布中的细微差异。我们实验室最近引入了这种将无标记的QPI数据与AI相结合以提取分子特异性的概念,称为具有计算特异性的相位成像。使用71层迁移学习模型Xception对8000张仔猪脑组织的SLIM图像进行训练,我们创建了一个双参数分类法,分别以82%和80%的准确率区分孕期大小和饮食类型。据我们所知,这种评估是专业病理学家或其他技术无法完成的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998b/8278825/1158b8690587/APPHD2-000006-076103_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验