Department of Information Technology, Uppsala University, P.O. Box 337, 751 05, Uppsala, Sweden.
Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
Sci Rep. 2022 Sep 7;12(1):15176. doi: 10.1038/s41598-022-19155-y.
Previous spatio-temporal COVID-19 prediction models have focused on the prediction of subsequent number of cases, and have shown varying accuracy and lack of high geographical resolution. We aimed to predict trends in COVID-19 test positivity, an important marker for planning local testing capacity and accessibility. We included a full year of information (June 29, 2020-July 4, 2021) with both direct and indirect indicators of transmission, e.g. mobility data, number of calls to the national healthcare advice line and vaccination coverage from Uppsala County, Sweden, as potential predictors. We developed four models for a 1-week-window, based on gradient boosting (GB), random forest (RF), autoregressive integrated moving average (ARIMA) and integrated nested laplace approximations (INLA). Three of the models (GB, RF and INLA) outperformed the naïve baseline model after data from a full pandemic wave became available and demonstrated moderate accuracy. An ensemble model of these three models slightly improved the average root mean square error to 0.039 compared to 0.040 for GB, RF and INLA, 0.055 for ARIMA and 0.046 for the naïve model. Our findings indicate that the collection of a wide variety of data can contribute to spatio-temporal predictions of COVID-19 test positivity.
先前的 COVID-19 时空预测模型主要集中在对后续病例数量的预测上,其准确性和缺乏高地理分辨率的情况各不相同。我们旨在预测 COVID-19 检测阳性率的趋势,这是规划当地检测能力和可及性的重要指标。我们纳入了一整年的信息(2020 年 6 月 29 日-2021 年 7 月 4 日),包括直接和间接的传播指标,如流动性数据、国家医疗保健咨询热线的呼叫次数和瑞典乌普萨拉县的疫苗接种率,作为潜在的预测因素。我们针对一周的窗口期,基于梯度提升(GB)、随机森林(RF)、自回归综合移动平均(ARIMA)和集成嵌套拉普拉斯近似(INLA)开发了四个模型。在获得完整的大流行波数据后,除了基于简单平均的基线模型外,三种模型(GB、RF 和 INLA)表现优于其他模型,具有中等准确性。这三种模型的集成模型将平均均方根误差略微提高到 0.039,GB、RF 和 INLA 的平均均方根误差分别为 0.040、0.055 和 0.046。我们的研究结果表明,广泛收集各种数据可以有助于 COVID-19 检测阳性率的时空预测。