Suppr超能文献

基于深度学习的光伏和电池储能集成家庭微电网系统的最优能量管理。

Deep learning based optimal energy management for photovoltaic and battery energy storage integrated home micro-grid system.

机构信息

Dept. of Electronics Engineering, Kookmin University, Seoul, 02707, South Korea.

Dept. of Electrical and Electronic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.

出版信息

Sci Rep. 2022 Sep 7;12(1):15133. doi: 10.1038/s41598-022-19147-y.

Abstract

The development of the advanced metering infrastructure (AMI) and the application of artificial intelligence (AI) enable electrical systems to actively engage in smart grid systems. Smart homes with energy storage systems (ESS) and renewable energy sources (RES)-known as home microgrids-have become a critical enabling technology for the smart grid. This article proposes a new model for the energy management system of a home microgrid integrated with a battery ESS (BESS). The proposed dynamic model integrates a deep learning (DL)-based predictive model, bidirectional long short-term memory (Bi-LSTM), with an optimization algorithm for optimal energy distribution and scheduling of a BESS-by determining the characteristics of distributed resources, BESS properties, and the user's lifestyle. The aim is to minimize the per-day electricity cost charged by time-of-use (TOU) pricing while considering the day-basis peak demand penalty. The proposed system also considers the operational constraints of renewable resources, the BESS, and electrical appliances. The simulation results from realistic case studies demonstrate the validation and responsibility of the proposed system in reducing a household's daily electricity cost.

摘要

高级计量基础设施(AMI)的发展和人工智能(AI)的应用使电力系统能够积极参与智能电网系统。具有储能系统(ESS)和可再生能源(RES)的智能家居-称为家庭微电网-已成为智能电网的关键使能技术。本文提出了一种新的家庭微电网能量管理系统模型,该系统集成了电池储能系统(BESS)。所提出的动态模型集成了基于深度学习(DL)的预测模型,双向长短期记忆(Bi-LSTM),以及优化算法,用于通过确定分布式资源、BESS 特性和用户生活方式的特点,对 BESS 进行最优的能量分配和调度。其目的是在考虑基于日的高峰需求罚款的情况下,通过分时电价来最小化每天收取的电费。所提出的系统还考虑了可再生资源、BESS 和电器的运行约束。来自实际案例研究的仿真结果验证并证明了所提出的系统在降低家庭每日电费方面的有效性和责任。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe19/9452551/b9890fd63d8b/41598_2022_19147_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验