Giordano Vito, Castagnoli Alessio, Pecorini Isabella, Chiarello Filippo
Department of Energy, Systems, Territory, and Construction Engineering, Pisa, Italy.
Business Engineering for Data Science-B4DS Research Laboratory, Pisa, Italy.
PLoS One. 2024 Dec 27;19(12):e0312709. doi: 10.1371/journal.pone.0312709. eCollection 2024.
Technological innovation serves as the catalyst for the shift towards circular practices. Technologies not only address technical challenges, facilitating the transition to a more circular economy, but they also enhance business efficiency and profitability. Furthermore, they promote inclusivity and create job opportunities, ultimately yielding positive societal impacts. The research in this area tends to focus on digital technologies, neglecting other technological areas. Moreover, it heavily relies on literature reviews and expert opinions, potentially introducing biases. In this article we investigate the technological landscape of the circular economy through Natural Language Processing (NLP), examining key technologies used in this sector and the primary challenges in managing these technologies. The methodology is applied to more than 45,000 scientific publications and aims to extract technologies in the text of scientific articles with NLP. The findings of our analysis reveal a strong emphasis on emerging digital, life cycle assessment and biomaterials technologies. Furthermore, we identified seven distinct technological domains within the CE field. Finally, we provide advantages and problems arising in the adoption and implementation of these technologies in an industrial context.
技术创新是向循环实践转变的催化剂。技术不仅解决技术挑战,促进向更循环经济的转型,还能提高商业效率和盈利能力。此外,它们促进包容性并创造就业机会,最终产生积极的社会影响。该领域的研究往往侧重于数字技术,而忽视了其他技术领域。此外,它严重依赖文献综述和专家意见,可能会引入偏差。在本文中,我们通过自然语言处理(NLP)研究循环经济的技术格局,考察该领域使用的关键技术以及管理这些技术的主要挑战。该方法应用于45000多篇科学出版物,旨在通过NLP提取科学文章文本中的技术。我们的分析结果显示,人们非常重视新兴的数字技术、生命周期评估和生物材料技术。此外,我们在循环经济领域确定了七个不同的技术领域。最后,我们提供了在工业环境中采用和实施这些技术所产生的优势和问题。