Deligiannakis Yiannis, Mantzanis Asterios, Zindrou Areti, Smykala Szymon, Solakidou Maria
Laboratory of Physical Chemistry of Materials and Environment, Department of Physics, University of Ioannina, Ioannina, Greece.
Institute of Environment and Sustainable Development, University Research Center of Ioannina, 45110, Ioannina, Greece.
Sci Rep. 2022 Sep 7;12(1):15132. doi: 10.1038/s41598-022-19382-3.
Pristine zirconia, ZrO, possesses high premise as photocatalyst due to its conduction band energy edge. However, its high energy-gap is prohibitive for photoactivation by solar-light. Currently, it is unclear how solar-active zirconia can be designed to meet the requirements for high photocatalytic performance. Moreover, transferring this design to an industrial-scale process is a forward-looking route. Herein, we have developed a novel Flame Spray Pyrolysis process for generating solar-light active nano-ZrO via engineering of lattice vacancies, Vo. Using solar photons, our optimal nano-ZrO can achieve milestone H-production yield, > 2400 μmolg h (closest thus, so far, to high photocatalytic water splitting performance benchmarks). Visible light can be also exploited by nano-ZrO at a high yield via a two-photon process. Control of monomeric Vo versus clusters of Vo's is the key parameter toward Highly-Performing-Photocatalytic ZrO. Thus, the reusable and sustainable ZrO catalyst achieves so far unattainable solar activated photocatalysis, under large scale production.
纯净的氧化锆(ZrO)因其导带能量边缘而具有作为光催化剂的高潜力。然而,其高禁带宽度阻碍了太阳光对其进行光活化。目前,尚不清楚如何设计具有太阳活性的氧化锆以满足高光催化性能的要求。此外,将这种设计转化为工业规模的工艺是一条具有前瞻性的途径。在此,我们开发了一种新颖的火焰喷雾热解工艺,通过晶格空位Vo的工程化来制备具有太阳活性的纳米ZrO。利用太阳光子,我们优化后的纳米ZrO能够实现具有里程碑意义的产氢率,即>2400 μmol g⁻¹ h⁻¹(这是目前为止最接近高光催化水分解性能基准的数值)。纳米ZrO还可以通过双光子过程以高产率利用可见光。控制单体Vo与Vo团簇是实现高性能光催化ZrO的关键参数。因此,这种可重复使用且可持续的ZrO催化剂在大规模生产下实现了目前难以达到的太阳能活化光催化。