Stathi Panagiota, Solakidou Maria, Deligiannakis Yiannis
Laboratory of Physics Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece.
Nanomaterials (Basel). 2021 Feb 16;11(2):501. doi: 10.3390/nano11020501.
A flame spray pyrolysis (FSP) method has been developed, for controlled doping of BiVO nanoparticles with W and Zr with the oxygen vacancies (Vo) of the BiVO lattice. Based on XPS and Raman data, we show that the nanolattice of W-BiVO and Zr-BiO can be controlled to achieve optimal O evolution from HO photocatalysis. A synergistic effect is found between the W- and Zr-doping level in correlation with the Vo-concentration. FSP- made W-BiVO show optimal photocatalytic O-production from HO, up to 1020 μmol/(g × h) for 5%W-BiVO, while the best performing Zr-doped achieved 970 μmol/(g × h) for 5%Zr-BiVO. Higher W-or Zr-doping resulted in deterioration in photocatalytic O-production from HO. Thus, engineering of FSP-made BiVO nanoparticles by precise control of the lattice and doping-level, allows significant enhancement of the photocatalytic O-evolution efficiency. Technology-wise, the present work demonstrates that flame spray pyrolysis as an inherently scalable technology, allows precise control of the BiVO nanolattice, to achieve significant improvement of its photocatalytic efficiency.
已开发出一种火焰喷雾热解(FSP)方法,用于通过BiVO晶格的氧空位(Vo)对BiVO纳米颗粒进行W和Zr的可控掺杂。基于XPS和拉曼数据,我们表明可以控制W-BiVO和Zr-BiO的纳米晶格,以实现来自H₂O光催化的最佳析氧。在W和Zr掺杂水平与Vo浓度的相关性中发现了协同效应。FSP制备的W-BiVO在H₂O光催化析氧方面表现最佳,5%W-BiVO可达1020 μmol/(g×h),而性能最佳的Zr掺杂的5%Zr-BiVO达到970 μmol/(g×h)。更高的W或Zr掺杂导致H₂O光催化析氧性能下降。因此,通过精确控制晶格和掺杂水平对FSP制备的BiVO纳米颗粒进行工程设计,可以显著提高光催化析氧效率。从技术角度来看,目前的工作表明火焰喷雾热解作为一种本质上可扩展的技术,可以精确控制BiVO纳米晶格,从而显著提高其光催化效率。