Suppr超能文献

英式英语中口语歧义词汇的显性规范与数据

Dominance Norms and Data for Spoken Ambiguous Words in British English.

作者信息

Gilbert Rebecca A, Rodd Jennifer M

机构信息

University College London, London, UK.

MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.

出版信息

J Cogn. 2022 Jan 6;5(1):4. doi: 10.5334/joc.194. eCollection 2022.

Abstract

Words with multiple meanings (e.g. bark of the tree/dog) have provided important insights into several key topics within psycholinguistics. Experiments that use ambiguous words require stimuli to be carefully controlled for the relative frequency (dominance) of their different meanings, as this property has pervasive effects on numerous tasks. Dominance scores are often calculated from word association responses: by measuring the proportion of participants who respond to the word 'bark' with dog-related (e.g. "woof") or tree-related (e.g. "branch") responses, researchers can estimate people's relative preferences for these meanings. We collated data from a number of recent experiments and pre-tests to construct a dataset of 29,542 valid responses for 243 spoken ambiguous words from participants from the United Kingdom. We provide summary dominance data for the 182 ambiguous words that have a minimum of 100 responses, and a tool for automatically coding new word association responses based on responses in our coded set, which allows additional data to be more easily scored and added to this database. All files can be found at: .

摘要

具有多种含义的词(例如,“树皮”/“狗叫声”)为心理语言学中的几个关键主题提供了重要见解。使用歧义性词语的实验要求对刺激进行仔细控制,以确保其不同含义的相对频率(主导性),因为这一特性对众多任务都有普遍影响。主导性分数通常根据词语联想反应来计算:通过测量参与者用与狗相关(例如“汪汪”)或与树相关(例如“树枝”)的反应来回应“bark”这个词的比例,研究人员可以估计人们对这些含义的相对偏好。我们整理了来自一些近期实验和预测试的数据,构建了一个数据集,其中包含来自英国参与者对243个口语歧义性词语的29,542条有效反应。我们提供了182个至少有100条反应的歧义性词语的主导性数据汇总,以及一个基于我们编码集中的反应自动对新的词语联想反应进行编码的工具,这使得额外数据能够更轻松地计分并添加到该数据库中。所有文件可在:. 找到

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f14/9400703/1a85afadd806/joc-5-1-194-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验