Suppr超能文献

固氮菌氧氟沙星转录异质性的分子起源。

Molecular Origins of Transcriptional Heterogeneity in Diazotrophic Klebsiella oxytoca.

机构信息

Faculty of Natural Sciences, Department of Life Sciences, Imperial College Londongrid.7445.2, London, United Kingdom.

School of Biological & Chemical Sciences, Queen Mary University of Londongrid.4868.2, London, United Kingdom.

出版信息

mSystems. 2022 Oct 26;7(5):e0059622. doi: 10.1128/msystems.00596-22. Epub 2022 Sep 8.

Abstract

Phenotypic heterogeneity in clonal bacterial batch cultures has been shown for a range of bacterial systems; however, the molecular origins of such heterogeneity and its magnitude are not well understood. Under conditions of extreme low-nitrogen stress in the model diazotroph Klebsiella oxytoca, we found remarkably high heterogeneity of gene expression, which codes for the structural genes of nitrogenase, one key enzyme of the global nitrogen cycle. This heterogeneity limited the bulk observed nitrogen-fixing capacity of the population. Using dual-probe, single-cell RNA fluorescent hybridization, we correlated expression with that of and -, which code for the main upstream regulatory components. Through stochastic transcription models and mutual information analysis, we revealed likely molecular origins for heterogeneity in nitrogenase expression. In the wild type and regulatory variants, we found that transcription was inherently bursty, but we established that noise propagation through signaling was also significant. The regulatory gene had the highest discernible effect on variance, while noise from factors outside the regulatory pathway were negligible. Understanding the basis of inherent heterogeneity of nitrogenase expression and its origins can inform biotechnology strategies seeking to enhance biological nitrogen fixation. Finally, we speculate on potential benefits of diazotrophic heterogeneity in natural soil environments. Nitrogen is an essential micronutrient for both plant and animal life and naturally exists in both reactive and inert chemical forms. Modern agriculture is heavily reliant on nitrogen that has been "fixed" into a reactive form via the energetically expensive Haber-Bosch process, with significant environmental consequences. Nitrogen-fixing bacteria provide an alternative source of fixed nitrogen for use in both biotechnological and agricultural settings, but this relies on a firm understanding of how the fixation process is regulated within individual bacterial cells. We examined the cell-to-cell variability in the nitrogen-fixing behavior of Klebsiella oxytoca, a free-living bacterium. The significance of our research is in identifying not only the presence of marked variability but also the specific mechanisms that give rise to it. This understanding gives insight into both the evolutionary advantages of variable behavior as well as strategies for biotechnological applications.

摘要

在一系列细菌系统中已经观察到克隆细菌批量培养中的表型异质性; 然而,这种异质性的分子起源及其程度尚不清楚。在模式固氮菌氧化葡萄糖菌的极端低氮胁迫条件下,我们发现基因表达的高度异质性,这些基因编码氮酶的结构基因,氮酶是全球氮循环的关键酶之一。这种异质性限制了群体中观察到的固氮能力。使用双探针,单细胞 RNA 荧光杂交,我们将表达与编码主要上游调节成分的 和 - 相关联。通过随机转录模型和互信息分析,我们揭示了氮酶表达异质性的可能分子起源。在野生型和调节变体中,我们发现 转录本质上是爆发性的,但我们确定通过信号传递的噪声传播也很重要。调节基因 对 方差的影响最大,而调节途径之外的因素产生的噪声可以忽略不计。了解氮酶表达固有异质性及其起源的基础可以为寻求增强生物固氮的生物技术策略提供信息。最后,我们推测自然土壤环境中固氮异质性的潜在好处。氮是植物和动物生命所必需的微量元素,自然存在于反应性和惰性化学形式中。现代农业严重依赖于通过能量密集型的哈伯-博世过程“固定”成反应性形式的氮,这对环境有重大影响。固氮细菌为生物技术和农业环境提供了固定氮的替代来源,但这依赖于对单个细菌细胞内固定过程如何调节的牢固理解。我们检查了氧化葡萄糖菌的固氮行为的细胞间可变性,氧化葡萄糖菌是一种自由生活的细菌。我们研究的意义不仅在于确定存在明显的可变性,而且还在于确定导致这种可变性的具体机制。这种理解深入了解可变行为的进化优势以及生物技术应用的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e732/9600154/059999cc48e4/msystems.00596-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验