Suppr超能文献

自动检测视网膜外核层的高反射焦点。

Automated detection of hyperreflective foci in the outer nuclear layer of the retina.

机构信息

Department of Neurology, Clinic of Optic Neuritis, The Danish Multiple Sclerosis Center (DMSC), Rigshospitalet, Glostrup, Denmark.

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.

出版信息

Acta Ophthalmol. 2023 Mar;101(2):200-206. doi: 10.1111/aos.15237. Epub 2022 Sep 8.

Abstract

PURPOSE

Hyperreflective foci are poorly understood transient elements seen on optical coherence tomography (OCT) of the retina in both healthy and diseased eyes. Systematic studies may benefit from the development of automated tools that can map and track such foci. The outer nuclear layer (ONL) of the retina is an attractive layer in which to study hyperreflective foci as it has no fixed hyperreflective elements in healthy eyes. In this study, we intended to evaluate whether automated image analysis can identify, quantify and visualize hyperreflective foci in the ONL of the retina.

METHODS

This longitudinal exploratory study investigated 14 eyes of seven patients including six patients with optic neuropathy and one with mild non-proliferative diabetic retinopathy. In total, 2596 OCT B-scan were obtained. An image analysis blob detector algorithm was used to detect candidate foci, and a convolutional neural network (CNN) trained on a manually labelled subset of data was then used to select those candidate foci in the ONL that fitted the characteristics of the reference foci best.

RESULTS

In the manually labelled data set, the blob detector found 2548 candidate foci, correctly detecting 350 (89%) out of 391 manually labelled reference foci. The accuracy of CNN classifier was assessed by manually splitting the 2548 candidate foci into a training and validation set. On the validation set, the classifier obtained an accuracy of 96.3%, a sensitivity of 88.4% and a specificity of 97.5% (AUC 0.989).

CONCLUSION

This study demonstrated that automated image analysis and machine learning methods can be used to successfully identify, quantify and visualize hyperreflective foci in the ONL of the retina on OCT scans.

摘要

目的

在健康和患病的眼睛的视网膜光学相干断层扫描(OCT)上,都可以看到高度反射焦点,这是一种理解甚少的瞬态元素。系统的研究可能受益于开发可以对这些焦点进行映射和跟踪的自动化工具。视网膜的外核层(ONL)是一个有吸引力的层,因为在健康的眼睛中,它没有固定的高反射元素。在这项研究中,我们旨在评估自动图像分析是否可以识别,量化和可视化视网膜 ONL 中的高反射焦点。

方法

这项纵向探索性研究调查了 7 名患者的 14 只眼睛,包括 6 名视神经病变患者和 1 名轻度非增生性糖尿病性视网膜病变患者。总共获得了 2596 个 OCT B 扫描。使用图像分析斑点探测器算法来检测候选焦点,然后使用在手动标记的数据集上训练的卷积神经网络(CNN)来选择那些在 ONL 中最符合参考焦点特征的候选焦点。

结果

在手动标记的数据集上,斑点探测器发现了 2548 个候选焦点,正确检测出 350 个(89%)的 391 个手动标记的参考焦点。通过手动将 2548 个候选焦点划分为训练集和验证集来评估 CNN 分类器的准确性。在验证集上,分类器的准确率为 96.3%,灵敏度为 88.4%,特异性为 97.5%(AUC 0.989)。

结论

这项研究表明,自动图像分析和机器学习方法可用于成功识别,量化和可视化 OCT 扫描中视网膜 ONL 中的高反射焦点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验