Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, China.
Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
J Proteome Res. 2022 Oct 7;21(10):2385-2396. doi: 10.1021/acs.jproteome.2c00255. Epub 2022 Sep 8.
It is generally believed that vascular endothelial cells (VECs) rely on glycolysis instead of the tricarboxylic acid (TCA) cycle under both normoxic and hypoxic conditions. However, the metabolic pattern of human umbilical vein endothelial cells (HUVECs) under extreme ischemia (hypoxia and nutrient deprivation) needs to be elucidated. We initiated a lethal ischemic model of HUVECs, performed proteomics and bioinformatics, and verified the metabolic pattern shift of HUVECs. Ischemic HUVECs displayed extensive aerobic respiration, including upregulation of the TCA cycle and mitochondrial respiratory chain in mitochondria and downregulation of glycolysis in cytoplasm. The TCA cycle was enhanced while the cell viability was decreased through the citrate synthase pathway when substrates of the TCA cycle (acetate and/or pyruvate) were added and vice versa when inhibitors of the TCA cycle (palmitoyl-CoA and/or avidin) were applied. The inconsistency of the TCA cycle level and cell viability suggested that the extensive TCA cycle can keep cells alive yet generate toxic substances that reduce cell viability. The data revealed that HUVECs depend on "ischemic TCA cycle" instead of glycolysis to keep cells alive under lethal ischemic conditions, but consideration must be given to relieve cell injury.
一般认为,血管内皮细胞(VECs)在常氧和缺氧条件下都依赖糖酵解而不是三羧酸(TCA)循环。然而,需要阐明人脐静脉内皮细胞(HUVECs)在极端缺血(缺氧和营养剥夺)下的代谢模式。我们启动了 HUVECs 的致命性缺血模型,进行了蛋白质组学和生物信息学分析,并验证了 HUVECs 的代谢模式转变。缺血 HUVECs 表现出广泛的有氧呼吸,包括 TCA 循环和线粒体呼吸链在线粒体中的上调和细胞质中糖酵解的下调。当添加 TCA 循环的底物(醋酸盐和/或丙酮酸)时,柠檬酸合酶途径增强,同时细胞活力降低,反之,当应用 TCA 循环的抑制剂(棕榈酰辅酶 A 和/或亲和素)时,细胞活力降低。TCA 循环水平和细胞活力的不一致表明,广泛的 TCA 循环可以使细胞在致命性缺血条件下存活,但必须考虑减轻细胞损伤。
数据表明,HUVECs 在致命性缺血条件下依赖“缺血 TCA 循环”而不是糖酵解来维持细胞存活,但必须考虑减轻细胞损伤。