Li Xu, Tan Zhi, Xing Jie, Wang Fei, Xie Lixu, Zhang Wen, Chen Ning, Chen Hao, Zhu Jianguo
College of Materials Science and Engineering, Sichuan University, 610064 Chengdu, China.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):42245-42257. doi: 10.1021/acsami.2c11691. Epub 2022 Sep 8.
For (NaBi)SrTiO-based (BNST) energy storage materials, a critical bottleneck is the early polarization saturation and low breakdown electric field (), which severely limits further development in the field of advancing pulsed power capacitors. Herein, a strategy, via multiscale regulation, including synergistically manipulation of the domain configuration and microstructure evolution in BNST-based ceramics, is propounded through introducing LiTaO(LT). The composition-driven fine domain size, as demonstrated by macroscale (size effect and dielectric response) and mesoscale (domains relaxor behavior) analysis, provides robust evidence of delayed polarization saturation and large polarization difference. Theoretical simulations and experimental results confirm that the fine grain size, uniform grain size distribution, and insignificant secondary phase contribute to the enhancements of . Further analyses of the intrinsic electronic structure reveal the intrinsic mechanism for enhancing via first-principles calculations on the basis of density functional theory. Consequently, owing to improved , delayed polarization saturation, and refined grain size, excellent comprehensive performances [high of 5.52 J/cm, large η of 85.68%, high hardness of 7.06 GPa, and broad operating temperature range (20-140 °C)] are realized. We believe that these findings can provide a thorough understanding of the origins of excellent comprehensive performances in BNST-based ceramics as well as some guidance in the exploration of materials with high-performance lead-free capacitors for application in future pulsed power systems.
对于(NaBi)SrTiO基(BNST)储能材料而言,一个关键瓶颈是早期极化饱和以及低击穿电场(),这严重限制了脉冲功率电容器领域的进一步发展。在此,通过引入LiTaO(LT),提出了一种通过多尺度调控的策略,包括协同操纵基于BNST的陶瓷中的畴结构和微观结构演变。宏观尺度(尺寸效应和介电响应)和中观尺度(畴弛豫行为)分析表明,成分驱动的精细畴尺寸为延迟极化饱和和大极化差异提供了有力证据。理论模拟和实验结果证实,细晶粒尺寸、均匀的晶粒尺寸分布以及不显著的第二相有助于提高。对本征电子结构的进一步分析揭示了基于密度泛函理论通过第一性原理计算提高的内在机制。因此,由于改善了、延迟了极化饱和并细化了晶粒尺寸,实现了优异的综合性能[高储能密度5.52 J/cm、大η值85.68%、高硬度7.06 GPa以及宽工作温度范围(20 - 140°C)]。我们相信,这些发现能够深入理解基于BNST的陶瓷优异综合性能的起源,并为探索用于未来脉冲功率系统的高性能无铅电容器材料提供一些指导。