Suppr超能文献

基于语义的可解释无模型少样本胸部X光诊断COVID-19学习方案

Semantic-Powered Explainable Model-Free Few-Shot Learning Scheme of Diagnosing COVID-19 on Chest X-Ray.

作者信息

Wang Yihang, Jiang Chunjuan, Wu Youqing, Lv Tianxu, Sun Heng, Liu Yuan, Li Lihua, Pan Xiang

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):5870-5882. doi: 10.1109/JBHI.2022.3205167. Epub 2022 Dec 7.

Abstract

Chest X-ray (CXR) is commonly performed as an initial investigation in COVID-19, whose fast and accurate diagnosis is critical. Recently, deep learning has a great potential in detecting people who are suspected to be infected with COVID-19. However, deep learning resulting with black-box models, which often breaks down when forced to make predictions about data for which limited supervised information is available and lack inter-pretability, still is a major barrier for clinical integration. In this work, we hereby propose a semantic-powered explainable model-free few-shot learning scheme to quickly and precisely diagnose COVID-19 with higher reliability and transparency. Specifically, we design a Report Image Explanation Cell (RIEC) to exploit clinically indicators derived from radiology reports as interpretable driver to introduce prior knowledge at training. Meanwhile, multi-task collaborative diagnosis strategy (MCDS) is developed to construct N-way K-shot tasks, which adopts a cyclic and collaborative training approach for producing better generalization performance on new tasks. Extensive experiments demonstrate that the proposed scheme achieves competitive results (accuracy of 98.91%, precision of 98.95%, recall of 97.94% and F1-score of 98.57%) to diagnose COVID-19 and other pneumonia infected categories, even with only 200 paired CXR images and radiology reports for training. Furthermore, statistical results of comparative experiments show that our scheme provides an interpretable window into the COVID-19 diagnosis to improve the performance of the small sample size, the reliability and transparency of black-box deep learning models. Our source codes will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/SPEMFSL-Diagnosis-COVID-19.

摘要

胸部X光(CXR)通常作为COVID-19的初步检查手段,其快速准确的诊断至关重要。近年来,深度学习在检测疑似感染COVID-19的人群方面具有巨大潜力。然而,深度学习产生的黑箱模型在对监督信息有限的数据进行预测时往往会失效,且缺乏可解释性,这仍然是临床应用的主要障碍。在这项工作中,我们提出了一种基于语义的可解释无模型少样本学习方案,以更高的可靠性和透明度快速准确地诊断COVID-19。具体而言,我们设计了一个报告图像解释单元(RIEC),利用从放射学报告中得出的临床指标作为可解释的驱动因素,在训练时引入先验知识。同时,开发了多任务协作诊断策略(MCDS)来构建N路K样本任务,采用循环协作训练方法以在新任务上产生更好的泛化性能。大量实验表明,即使仅使用200对CXR图像和放射学报告进行训练,所提出的方案在诊断COVID-19和其他肺炎感染类别方面也取得了有竞争力的结果(准确率98.91%,精确率98.95%,召回率97.94%,F1分数98.57%)。此外,对比实验的统计结果表明,我们的方案为COVID-19诊断提供了一个可解释的窗口,以提高小样本规模下的性能、黑箱深度学习模型的可靠性和透明度。我们的源代码将在https://github.com/AI-medical-diagnosis-team-of-JNU/SPEMFSL-Diagnosis-COVID-19上发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验