Suppr超能文献

基于淋巴结比率的肺神经内分泌癌预后列线图:SEER 数据库分析。

Prognostic nomograms for lung neuroendocrine carcinomas based on lymph node ratio: a SEER database analysis.

机构信息

Department of Respiration, 585250The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Precision Medicine Center, 585250The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

J Int Med Res. 2022 Sep;50(9):3000605221115160. doi: 10.1177/03000605221115160.

Abstract

OBJECTIVE

The current study aimed to explore the prognostic value of the lymph node ratio (LNR) in patients with lung neuroendocrine carcinomas (LNECs).

METHODS

Data for 1564 elderly patients with LNECs between 1998 and 2016 were obtained from the Surveillance, Epidemiology, and End Results database. The cases were assigned randomly to training (n = 1086) and internal validation (n = 478) sets. The association between LNR and survival was investigated by Cox regression.

RESULTS

Multivariate analyses identified age, tumor grade, summary stage, M stage, surgery, and LNR as independent prognostic factors for both overall survival (OS) and lung cancer-specific survival (LCSS). Tumor size was also a prognostic determinant for LCSS. Prognostic nomograms combining LNR with other informative variables showed good discrimination and calibration abilities in both the training and validation sets. In addition, the C-index of the nomograms was statistically superior to the American Joint Committee on Cancer (AJCC) staging system in both the training and validation cohorts.

CONCLUSIONS

These nomograms, based on LNR, showed superior prognostic predictive accuracy compared with the AJCC staging system for predicting OS and LCSS in patients with LNECs.

摘要

目的

本研究旨在探讨淋巴结比率(LNR)在肺神经内分泌癌(LNEC)患者中的预后价值。

方法

从 1998 年至 2016 年的监测、流行病学和最终结果数据库中获得了 1564 名老年 LNEC 患者的数据。将病例随机分配到训练集(n=1086)和内部验证集(n=478)。通过 Cox 回归分析 LNR 与生存之间的关系。

结果

多变量分析确定年龄、肿瘤分级、综合分期、M 分期、手术和 LNR 是总生存(OS)和肺癌特异性生存(LCSS)的独立预后因素。肿瘤大小也是 LCSS 的预后决定因素。将 LNR 与其他信息变量相结合的预后列线图在训练集和验证集中均显示出良好的区分度和校准能力。此外,在训练和验证队列中,列线图的 C 指数在统计学上均优于美国癌症联合委员会(AJCC)分期系统。

结论

这些基于 LNR 的列线图在预测 LNEC 患者 OS 和 LCSS 方面的预后预测准确性优于 AJCC 分期系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d107/9465598/1c1ff5f18bd2/10.1177_03000605221115160-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验