Suppr超能文献

基于人工智能的工业应用单视图三维重建方法分析。

Analysis of AI-Based Single-View 3D Reconstruction Methods for an Industrial Application.

机构信息

TRUMPF Laser GmbH, Aichhalder Str. 39, 78713 Schramberg, Germany.

Institute of Industrial Information Technology, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany.

出版信息

Sensors (Basel). 2022 Aug 25;22(17):6425. doi: 10.3390/s22176425.

Abstract

Machine learning (ML) is a key technology in smart manufacturing as it provides insights into complex processes without requiring deep domain expertise. This work deals with deep learning algorithms to determine a 3D reconstruction from a single 2D grayscale image. The potential of 3D reconstruction can be used for quality control because the height values contain relevant information that is not visible in 2D data. Instead of 3D scans, estimated depth maps based on a 2D input image can be used with the advantage of a simple setup and a short recording time. Determining a 3D reconstruction from a single input image is a difficult task for which many algorithms and methods have been proposed in the past decades. In this work, three deep learning methods, namely stacked autoencoder (SAE), generative adversarial networks (GANs) and U-Nets are investigated, evaluated and compared for 3D reconstruction from a 2D grayscale image of laser-welded components. In this work, different variants of GANs are tested, with the conclusion that Wasserstein GANs (WGANs) are the most robust approach among them. To the best of our knowledge, the present paper considers for the first time the U-Net, which achieves outstanding results in semantic segmentation, in the context of 3D reconstruction tasks. Unlike the U-Net, which uses standard convolutions, the stacked dilated U-Net (SDU-Net) applies stacked dilated convolutions. Of all the 3D reconstruction approaches considered in this work, the SDU-Net shows the best performance, not only in terms of evaluation metrics but also in terms of computation time. Due to the comparably small number of trainable parameters and the suitability of the architecture for strong data augmentation, a robust model can be generated with only a few training data.

摘要

机器学习(ML)是智能制造的关键技术,因为它可以在不需要深入领域专业知识的情况下提供对复杂过程的深入了解。这项工作涉及深度学习算法,以从单个 2D 灰度图像确定 3D 重建。3D 重建的潜力可用于质量控制,因为高度值包含在 2D 数据中不可见的相关信息。代替 3D 扫描,可以使用基于 2D 输入图像的估计深度图,其优点是设置简单且记录时间短。从单个输入图像确定 3D 重建对于许多算法和方法在过去几十年中已经提出了许多算法和方法来说是一项艰巨的任务。在这项工作中,研究、评估和比较了三种深度学习方法,即堆叠自动编码器(SAE)、生成对抗网络(GANs)和 U-Nets,用于从激光焊接组件的 2D 灰度图像重建 3D。在这项工作中,测试了不同变体的 GAN,得出的结论是 Wasserstein GANs(WGANs)是其中最稳健的方法。据我们所知,本文首次考虑了 U-Net,它在语义分割方面取得了出色的结果,在 3D 重建任务中。与使用标准卷积的 U-Net 不同,堆叠扩张 U-Net(SDU-Net)应用堆叠扩张卷积。在所考虑的所有 3D 重建方法中,SDU-Net 的性能最佳,不仅在评估指标方面,而且在计算时间方面也是如此。由于可训练参数的数量相对较少,并且架构适合于强大的数据增强,因此可以仅使用少量训练数据生成稳健的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2f9/9460317/6ac13d3e648d/sensors-22-06425-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验