Suppr超能文献

基于 U-Net 的医学图像分割的堆叠扩张卷积和非对称架构。

Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation.

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.

出版信息

Comput Biol Med. 2022 Sep;148:105891. doi: 10.1016/j.compbiomed.2022.105891. Epub 2022 Jul 21.

Abstract

Deep learning has been widely utilized for medical image segmentation. The most commonly used U-Net and its variants often share two common characteristics but lack solid evidence for the effectiveness. First, each block (i.e., consecutive convolutions of feature maps of the same resolution) outputs feature maps from the last convolution, limiting the variety of the receptive fields. Second, the network has a symmetric structure where the encoder and the decoder paths have similar numbers of channels. We explored two novel revisions: a stacked dilated operation that outputs feature maps from multi-scale receptive fields to replace the consecutive convolutions; an asymmetric architecture with fewer channels in the decoder path. Two novel models were developed: U-Net using the stacked dilated operation (SDU-Net) and asymmetric SDU-Net (ASDU-Net). We used both publicly available and private datasets to assess the efficacy of the proposed models. Extensive experiments confirmed SDU-Net outperformed or achieved performance similar to the state-of-the-art while using fewer parameters (40% of U-Net). ASDU-Net further reduced the model parameters to 20% of U-Net with performance comparable to SDU-Net. In conclusion, the stacked dilated operation and the asymmetric structure are promising for improving the performance of U-Net and its variants.

摘要

深度学习已广泛应用于医学图像分割。最常用的 U-Net 及其变体通常具有两个共同特征,但缺乏有效性的确凿证据。首先,每个块(即相同分辨率的特征图的连续卷积)从最后一个卷积输出特征图,限制了感受野的多样性。其次,网络具有对称结构,编码器和解码器路径具有相似数量的通道。我们探索了两个新颖的修订:使用多尺度感受野输出特征图的堆叠扩张操作,以替代连续卷积;解码器路径中通道较少的不对称架构。开发了两个新模型:使用堆叠扩张操作的 U-Net(SDU-Net)和不对称 SDU-Net(ASDU-Net)。我们使用了公开可用和私人数据集来评估所提出模型的功效。广泛的实验证实,SDU-Net 在使用较少参数(U-Net 的 40%)的情况下,表现优于或与最先进的方法相当。ASDU-Net 进一步将模型参数减少到 U-Net 的 20%,性能与 SDU-Net 相当。总之,堆叠扩张操作和不对称结构有望提高 U-Net 及其变体的性能。

相似文献

1
Stacked dilated convolutions and asymmetric architecture for U-Net-based medical image segmentation.
Comput Biol Med. 2022 Sep;148:105891. doi: 10.1016/j.compbiomed.2022.105891. Epub 2022 Jul 21.
2
IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation.
Comput Biol Med. 2021 Aug;135:104551. doi: 10.1016/j.compbiomed.2021.104551. Epub 2021 Jun 12.
3
HDA-Net: A novel dual gated attention network using comprehensive hybrid dilated convolutions for medical image segmentation.
Comput Biol Med. 2023 Jan;152:106384. doi: 10.1016/j.compbiomed.2022.106384. Epub 2022 Nov 30.
4
A multiple-channel and atrous convolution network for ultrasound image segmentation.
Med Phys. 2020 Dec;47(12):6270-6285. doi: 10.1002/mp.14512. Epub 2020 Oct 18.
5
DilUnet: A U-net based architecture for blood vessels segmentation.
Comput Methods Programs Biomed. 2022 May;218:106732. doi: 10.1016/j.cmpb.2022.106732. Epub 2022 Mar 5.
6
LMU-Net: lightweight U-shaped network for medical image segmentation.
Med Biol Eng Comput. 2024 Jan;62(1):61-70. doi: 10.1007/s11517-023-02908-w. Epub 2023 Aug 24.
7
A Multi-Scale Context Aware Attention Model for Medical Image Segmentation.
IEEE J Biomed Health Inform. 2023 Aug;27(8):3731-3739. doi: 10.1109/JBHI.2022.3227540. Epub 2023 Aug 7.
8
HDConv: Heterogeneous kernel-based dilated convolutions.
Neural Netw. 2024 Nov;179:106568. doi: 10.1016/j.neunet.2024.106568. Epub 2024 Jul 23.
9
10
Analysis of AI-Based Single-View 3D Reconstruction Methods for an Industrial Application.
Sensors (Basel). 2022 Aug 25;22(17):6425. doi: 10.3390/s22176425.

引用本文的文献

1
An enhanced real-time human pose estimation method based on modified YOLOv8 framework.
Sci Rep. 2024 Apr 5;14(1):8012. doi: 10.1038/s41598-024-58146-z.
2
BézierSeg: Parametric Shape Representation for Fast Object Segmentation in Medical Images.
Life (Basel). 2023 Mar 9;13(3):743. doi: 10.3390/life13030743.

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
2
Real-time tool to layer distance estimation for robotic subretinal injection using intraoperative 4D OCT.
Biomed Opt Express. 2021 Jan 27;12(2):1085-1104. doi: 10.1364/BOE.415477. eCollection 2021 Feb 1.
3
nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation.
Nat Methods. 2021 Feb;18(2):203-211. doi: 10.1038/s41592-020-01008-z. Epub 2020 Dec 7.
4
Adversarial convolutional network for esophageal tissue segmentation on OCT images.
Biomed Opt Express. 2020 May 18;11(6):3095-3110. doi: 10.1364/BOE.394715. eCollection 2020 Jun 1.
5
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
6
Skin lesion segmentation via generative adversarial networks with dual discriminators.
Med Image Anal. 2020 Aug;64:101716. doi: 10.1016/j.media.2020.101716. Epub 2020 May 23.
7
Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network.
Sensors (Basel). 2020 Mar 13;20(6):1601. doi: 10.3390/s20061601.
8
Skin lesion segmentation using high-resolution convolutional neural network.
Comput Methods Programs Biomed. 2020 Apr;186:105241. doi: 10.1016/j.cmpb.2019.105241. Epub 2019 Dec 4.
9
Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT.
Biomed Opt Express. 2018 May 21;9(6):2716-2732. doi: 10.1364/BOE.9.002716. eCollection 2018 Jun 1.
10
DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images.
Biomed Opt Express. 2018 Jun 25;9(7):3244-3265. doi: 10.1364/BOE.9.003244. eCollection 2018 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验