Suppr超能文献

利用智能手机内置传感器进行传感器重新校准的结合 CNN 和 Vision Transformer 的传输模式检测

Transportation Mode Detection Combining CNN and Vision Transformer with Sensors Recalibration Using Smartphone Built-In Sensors.

机构信息

Graduate School of Interdisciplinary Information Studies (GSII), The University of Tokyo, 4 Chome-6-1 Komaba, Meguro City, Tokyo 153-0041, Japan.

The Institute of Industrial Science (IIS), The University of Tokyo, 4 Chome-6-1 Komaba, Meguro City, Tokyo 153-0041, Japan.

出版信息

Sensors (Basel). 2022 Aug 26;22(17):6453. doi: 10.3390/s22176453.

Abstract

Transportation Mode Detection (TMD) is an important task for the Intelligent Transportation System (ITS) and Lifelog. TMD, using smartphone built-in sensors, can be a low-cost and effective solution. In recent years, many studies have focused on TMD, yet they support a limited number of modes and do not consider similar transportation modes and holding places, limiting further applications. In this paper, we propose a new network framework to realize TMD, which combines structural and spatial interaction features, and considers the weights of multiple sensors' contributions, enabling the recognition of eight transportation modes with four similar transportation modes and four holding places. First, raw data is segmented and transformed into a spectrum image and then ResNet and Vision Transformers (Vit) are used to extract structural and spatial interaction features, respectively. To consider the contribution of different sensors, the weights of each sensor are recalibrated using an ECA module. Finally, Multi-Layer Perceptron (MLP) is introduced to fuse these two different kinds of features. The performance of the proposed method is evaluated on the public Sussex-Huawei Locomotion-Transportation (SHL) dataset, and is found to outperform the baselines by at least 10%.

摘要

交通方式检测(TMD)是智能交通系统(ITS)和生活记录的重要任务。TMD 使用智能手机内置传感器,可以提供低成本且有效的解决方案。近年来,许多研究都集中在 TMD 上,但它们支持的模式数量有限,并且不考虑类似的交通模式和握持位置,限制了进一步的应用。在本文中,我们提出了一种新的网络框架来实现 TMD,该框架结合了结构和空间交互特征,并考虑了多个传感器贡献的权重,能够识别具有四个类似交通模式和四个握持位置的八种交通模式。首先,对原始数据进行分段并转换为频谱图像,然后分别使用 ResNet 和 Vision Transformers (Vit) 提取结构和空间交互特征。为了考虑不同传感器的贡献,使用 ECA 模块重新校准每个传感器的权重。最后,引入多层感知机(MLP)融合这两种不同类型的特征。在所提出的方法在公共 Sussex-Huawei Locomotion-Transportation (SHL) 数据集上进行评估,发现其性能至少比基线提高了 10%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c10/9460376/78d206c3ce64/sensors-22-06453-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验