Department of Information Technology, Jadavpur University, Kolkata 700098, India.
Department of Computer Science and Engineering, Aliah University, Kolkata 700156, India.
Sensors (Basel). 2022 Aug 30;22(17):6537. doi: 10.3390/s22176537.
Obstacle detection is an essential task for the autonomous navigation by robots. The task becomes more complex in a dynamic and cluttered environment. In this context, the RGB-D camera sensor is one of the most common devices that provides a quick and reasonable estimation of the environment in the form of RGB and depth images. This work proposes an efficient obstacle detection and tracking method using depth images to facilitate quick dynamic obstacle detection. To achieve early detection of dynamic obstacles and stable estimation of their states, as in previous methods, we applied a u-depth map for obstacle detection. Unlike existing methods, the present method provides dynamic thresholding facilities on the u-depth map to detect obstacles more accurately. Here, we propose a restricted v-depth map technique, using post-processing after the u-depth map processing to obtain a better prediction of the obstacle dimension. We also propose a new algorithm to track obstacles until they are within the field of view (FOV). We evaluate the performance of the proposed system on different kinds of data sets. The proposed method outperformed the vision-based state-of-the-art (SoA) methods in terms of state estimation of dynamic obstacles and execution time.
障碍物检测是机器人自主导航的一项基本任务。在动态和杂乱的环境中,这项任务变得更加复杂。在这种情况下,RGB-D 相机传感器是最常用的设备之一,它以 RGB 和深度图像的形式提供了对环境的快速和合理的估计。这项工作提出了一种使用深度图像进行高效障碍物检测和跟踪的方法,以方便快速动态障碍物检测。为了实现动态障碍物的早期检测和对其状态的稳定估计,与以前的方法一样,我们应用了 u-depth 图进行障碍物检测。与现有方法不同的是,该方法在 u-depth 图上提供了动态阈值设施,以更准确地检测障碍物。在这里,我们提出了一种受限 v-depth 图技术,在 u-depth 图处理后进行后处理,以更好地预测障碍物的尺寸。我们还提出了一种新的算法来跟踪障碍物,直到它们在视场 (FOV) 内。我们在不同类型的数据集上评估了所提出系统的性能。在所提出的方法中,在动态障碍物的状态估计和执行时间方面,均优于基于视觉的最新方法 (SoA)。