Suppr超能文献

深度学习结合多模态整合预测非小细胞肺癌患者的复发。

Deep Learning with Multimodal Integration for Predicting Recurrence in Patients with Non-Small Cell Lung Cancer.

机构信息

Computational Medicine, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea.

Division of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea.

出版信息

Sensors (Basel). 2022 Aug 31;22(17):6594. doi: 10.3390/s22176594.

Abstract

Due to high recurrence rates in patients with non-small cell lung cancer (NSCLC), medical professionals need extremely accurate diagnostic methods to prevent bleak prognoses. However, even the most commonly used diagnostic method, the TNM staging system, which describes the tumor-size, nodal-involvement, and presence of metastasis, is often inaccurate in predicting NSCLC recurrence. These limitations make it difficult for clinicians to tailor treatments to individual patients. Here, we propose a novel approach, which applies deep learning to an ensemble-based method that exploits patient-derived, multi-modal data. This will aid clinicians in successfully identifying patients at high risk of recurrence and improve treatment planning.

摘要

由于非小细胞肺癌 (NSCLC) 患者的复发率很高,医疗专业人员需要极其准确的诊断方法来预防黯淡的预后。然而,即使是最常用的诊断方法,即描述肿瘤大小、淋巴结受累和转移存在的 TNM 分期系统,在预测 NSCLC 复发方面也常常不准确。这些局限性使得临床医生难以根据个体患者的情况量身定制治疗方案。在这里,我们提出了一种新方法,即将深度学习应用于基于集成的方法,该方法利用患者衍生的多模态数据。这将有助于临床医生成功识别复发风险高的患者,并改善治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5443/9459700/bfee205b618e/sensors-22-06594-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验