Suppr超能文献

使用马氏距离分类方法对阿尔及利亚康斯坦丁拜伊宫古壁画图像进行增强和空洞提取。

Images Enhancement of Ancient Mural Painting of Bey's Palace Constantine, Algeria and Lacuna Extraction Using Mahalanobis Distance Classification Approach.

机构信息

State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China.

出版信息

Sensors (Basel). 2022 Sep 2;22(17):6643. doi: 10.3390/s22176643.

Abstract

As a result of human activity and environmental changes, several types of damages may occur to ancient mural paintings; indeed, lacunae, which refer to the area of paint layer loss, are the most prevalent kind. The presence of lacuna is an essential sign of the progress of mural painting deterioration. Most studies have focused on detecting and removing cracks from old paintings. However, lacuna extraction has not received the necessary consideration and is not well-explored. Furthermore, most recent studies have focused on using deep learning for mural protection and restoration, but deep learning requires a large amount of data and computational resources which is not always available in heritage institutions. In this paper, we present an efficient method to automatically extract lacunae and map deterioration from RGB images of ancient mural paintings of Bey's Palace in Algeria. Firstly, a preprocessing was applied using Dark Channel Prior (DCP) to enhance the quality and improve visibility of the murals. Secondly, a determination of the training sample and pixel's grouping was assigned to their closest sample based on Mahalanobis Distance (MD) by calculating both the mean and variance of the classes in three bands (R, G, and B), in addition to the covariance matrix of all the classes to achieve lacuna extraction of the murals. Finally, the accuracy of extraction was calculated. The experimental results showed that the proposed method can achieve a conspicuously high accuracy of 94.33% in extracting lacunae from ancient mural paintings, thus supporting the work of a specialist in heritage institutions in terms of the time- and cost-consuming documentation process.

摘要

由于人类活动和环境变化,可能会对古代壁画造成多种类型的损坏;事实上,壁画层缺失的区域,即所谓的“缺画区”,是最常见的一种损坏类型。缺画区的存在是壁画劣化进程的重要标志。大多数研究都集中在检测和去除旧画上的裂缝。然而,对于壁画缺画区的提取并没有得到必要的关注和深入研究。此外,最近的大多数研究都集中在使用深度学习来保护和修复壁画,但深度学习需要大量的数据和计算资源,这在文物机构中并不总是具备的。在本文中,我们提出了一种从阿尔及利亚 Bey 宫古代壁画的 RGB 图像中自动提取壁画缺画区并绘制劣化图的有效方法。首先,使用暗通道先验(DCP)进行预处理,以提高壁画的质量和可见度。其次,通过计算三个波段(R、G 和 B)中所有类别的均值和方差,以及所有类别的协方差矩阵,根据马氏距离(MD)将训练样本和像素分组分配到与其最近的样本,从而实现壁画缺画区的提取。最后,计算提取的准确性。实验结果表明,该方法在提取古代壁画的缺画区方面具有很高的准确性,达到了 94.33%,从而为文物机构的专家在耗时耗力的文档处理方面提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5fc/9460039/2ee71a2f16c2/sensors-22-06643-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验