Suppr超能文献

利用哨兵-2影像通过混合反演工作流程对阿根廷灌溉冬小麦性状进行季节性测绘

Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery.

作者信息

Caballero Gabriel, Pezzola Alejandro, Winschel Cristina, Casella Alejandra, Angonova Paolo Sanchez, Rivera-Caicedo Juan Pablo, Berger Katja, Verrelst Jochem, Delegido Jesus

机构信息

Agri-Environmental Engineering, Technological University of Uruguay (UTEC), Av. Italia 6201, Montevideo 11500, Uruguay.

Image Processing Laboratory (IPL), University of Valencia, C/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain.

出版信息

Remote Sens (Basel). 2022 Sep 10;14(18):4531. doi: 10.3390/rs14184531.

Abstract

Earth observation offers an unprecedented opportunity to monitor intensively cultivated areas providing key support to assess fertilizer needs and crop water uptake. Routinely, vegetation traits mapping can help farmers to monitor plant development along the crop's phenological cycle, which is particularly relevant for irrigated agricultural areas. The high spatial and temporal resolution of the Sentinel-2 (S2) multispectral instrument leverages the possibility to estimate leaf area index (LAI), canopy chlorophyll content (CCC), and vegetation water content (VWC) from space. Therefore, our study presents a hybrid retrieval workflow combining a physically-based strategy with a machine learning regression algorithm, i.e., Gaussian processes regression, and an active learning technique to estimate LAI, CCC and VWC of irrigated winter wheat. The established hybrid models of the three traits were validated against in-situ data of a wheat campaign in the Bonaerense valley, South of the Buenos Aires Province, Argentina, in the year 2020. We obtained good to highly accurate validation results with LAI: R = 0.92, RMSE = 0.43 m m, CCC: R = 0.80, RMSE = 0.27 g m and VWC: R = 0.75, RMSE = 416 g m. The retrieval models were also applied to a series of S2 images, producing time series along the seasonal cycle, which reflected the effects of fertilizer and irrigation on crop growth. The associated uncertainties along with the obtained maps underlined the robustness of the hybrid retrieval workflow. We conclude that processing S2 imagery with optimised hybrid models allows accurate space-based crop traits mapping over large irrigated areas and thus can support agricultural management decisions.

摘要

对地观测提供了一个前所未有的机会来监测集约化种植区域,为评估肥料需求和作物水分吸收提供关键支持。通常,植被特征测绘可以帮助农民监测作物在物候周期中的生长发育情况,这对于灌溉农业区尤为重要。哨兵 - 2(S2)多光谱仪器的高空间和时间分辨率使得从太空估计叶面积指数(LAI)、冠层叶绿素含量(CCC)和植被含水量(VWC)成为可能。因此,我们的研究提出了一种混合反演工作流程,该流程将基于物理的策略与机器学习回归算法(即高斯过程回归)以及主动学习技术相结合,以估计灌溉冬小麦的LAI、CCC和VWC。针对2020年阿根廷布宜诺斯艾利斯省南部博纳雷斯山谷一次小麦种植活动的实地数据,对所建立的这三个特征的混合模型进行了验证。我们在LAI方面获得了良好到高度准确的验证结果:R = 0.92,RMSE = 0.43 m²/m²,CCC方面:R = 0.80,RMSE = 0.27 g/m²,VWC方面:R = 0.75,RMSE = 416 g/m²。反演模型还应用于一系列S2图像,生成了沿季节周期的时间序列,反映了肥料和灌溉对作物生长的影响。相关的不确定性以及所获得的地图突出了混合反演工作流程的稳健性。我们得出结论,使用优化的混合模型处理S2图像能够在大面积灌溉区域进行准确的基于空间的作物特征测绘,从而可以支持农业管理决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验