Verrelst Jochem, Vicent Jorge, Rivera-Caicedo Juan Pablo, Lumbierres Maria, Morcillo-Pallarés Pablo, Moreno José
Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, Spain.
Magellium, 31520 Toulouse, France.
Remote Sens (Basel). 2019 Aug 17;11(16):1923. doi: 10.3390/rs11161923.
Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with the atmospheric RTM MODTRAN5. Because of MODTRAN's computational burden and GSA's demand for many simulations, we first developed a surrogate statistical learning model, i.e., an emulator, that allows approximating RTM outputs through a machine learning algorithm with low computation time. A Gaussian process regression (GPR) emulator was used to reproduce lookup tables of TOA radiance as a function of 12 input variables with relative errors of 2.4%. GSA total sensitivity results quantified the driving variables of emulated TOA radiance along the 400-2500 nm spectral range at 15 cm (between 0.3-9 nm); overall, the vegetation variables play a more dominant role than atmospheric variables. This suggests the possibility to retrieve biophysical variables directly from at-sensor TOA radiance data. Particularly promising are leaf chlorophyll content, leaf water thickness and leaf area index, as these variables are the most important drivers in governing TOA radiance outside the water absorption regions. A software framework was developed to facilitate the development of retrieval models from at-sensor TOA radiance data. As a proof of concept, maps of these biophysical variables have been generated for both TOA (L1C) and bottom-of-atmosphere (L2A) Sentinel-2 data by means of a hybrid retrieval scheme, i.e., training GPR retrieval algorithms using the RTM simulations. Obtained maps from L1C vs L2A data are consistent, suggesting that vegetation properties can be directly retrieved from TOA radiance data given a cloud-free sky, thus without the need of an atmospheric correction.
了解驱动植被表面大气顶层(TOA)辐射率的关键变量是从TOA辐射率数据中推导生物物理变量的重要一步,例如通过光学卫星观测到的数据。叶-冠层-大气耦合辐射传输模型(RTM)能够将植被变量直接与测量到的传感器处的TOA辐射率联系起来。对RTM进行全局敏感性分析(GSA)可以计算每个输入变量对输出方差的总贡献。我们使用GSA确定叶-冠层-大气变量对TOA辐射率的影响,以深入了解可检索变量。叶和冠层RTM模型PROSAIL与大气RTM模型MODTRAN5进行了耦合。由于MODTRAN的计算负担以及GSA对大量模拟的需求,我们首先开发了一个替代统计学习模型,即模拟器,它允许通过计算时间较短的机器学习算法来近似RTM输出。使用高斯过程回归(GPR)模拟器来重现TOA辐射率的查找表,该查找表是12个输入变量的函数,相对误差为2.4%。GSA总敏感性结果量化了在15厘米(0.3 - 9纳米之间)的400 - 2500纳米光谱范围内模拟TOA辐射率的驱动变量;总体而言,植被变量比大气变量发挥着更主导的作用。这表明直接从传感器处的TOA辐射率数据中检索生物物理变量是有可能的。特别有前景的是叶片叶绿素含量、叶片水厚度和叶面积指数,因为这些变量是控制水吸收区域之外的TOA辐射率的最重要驱动因素。开发了一个软件框架,以促进从传感器处的TOA辐射率数据开发检索模型。作为概念验证,通过混合检索方案,即使用RTM模拟训练GPR检索算法,为TOA(L1C)和大气底层(L2A)哨兵 - 2数据生成了这些生物物理变量的地图。从L1C数据和L2A数据获得的地图是一致的,这表明在晴空条件下,可以直接从TOA辐射率数据中检索植被属性,因此无需进行大气校正。