MIT School of Bioengineering Sciences & Research, MIT- Art Design and Technology University, Raj Baugh Campus, Loni Kalbhor, Pune 412201, Maharashtra, India.
Chemical Engineering and Process Development (CEPD) Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.
Curr Top Med Chem. 2022;22(21):1793-1810. doi: 10.2174/1568026622666220907121942.
Breast cancer is the most predominantly occurring cancer in the world. Several genes and proteins have been recently studied to predict biomarkers that enable early disease identification and monitor its recurrence. In the era of high-throughput technology, studies show several applications of big data for identifying potential biomarkers. The review aims to provide a comprehensive overview of big data analysis in breast cancer towards the prediction of biomarkers with emphasis on computational methods like text mining, network analysis, next-generation sequencing technology (NGS), machine learning (ML), deep learning (DL), and precision medicine. Integrating data from various computational approaches enables the stratification of cancer patients and the identification of molecular signatures in cancer and their subtypes. The computational methods and statistical analysis help expedite cancer prognosis and develop precision cancer medicine (PCM). As a part of case study in the present work, we constructed a large gene-drug interaction network to predict new biomarkers genes. The gene-drug network helped us to identify eight genes that could serve as novel potential biomarkers.
乳腺癌是全球最常见的癌症。最近研究了几种基因和蛋白质,以预测生物标志物,从而实现早期疾病识别和监测其复发。在高通量技术时代,研究表明大数据在识别潜在生物标志物方面有多种应用。本综述旨在全面概述乳腺癌中的大数据分析,重点介绍计算方法,如文本挖掘、网络分析、下一代测序技术 (NGS)、机器学习 (ML)、深度学习 (DL) 和精准医学。整合来自各种计算方法的数据可实现癌症患者的分层以及癌症及其亚型的分子特征的识别。计算方法和统计分析有助于加速癌症预后并开发精准癌症医学 (PCM)。在本工作的案例研究部分,我们构建了一个大型基因-药物相互作用网络,以预测新的生物标志物基因。基因-药物网络帮助我们鉴定了 8 个可能作为新的潜在生物标志物的基因。