Suppr超能文献

使用贝叶斯估计,人们可以获得贝叶斯因子提供的所有好处,甚至更多。

With Bayesian estimation one can get all that Bayes factors offer, and more.

机构信息

Office of Research and Academia-Government-Community Collaboration, Education and Research Center for Artificial Intelligence and Data Innovation, Hiroshima University, Hiroshima, Japan.

University of Groningen, Groningen, Netherlands.

出版信息

Psychon Bull Rev. 2023 Apr;30(2):534-552. doi: 10.3758/s13423-022-02164-3. Epub 2022 Sep 9.

Abstract

In classical statistics, there is a close link between null hypothesis significance testing (NHST) and parameter estimation via confidence intervals. However, for the Bayesian counterpart, a link between null hypothesis Bayesian testing (NHBT) and Bayesian estimation via a posterior distribution is less straightforward, but does exist, and has recently been reiterated by Rouder, Haaf, and Vandekerckhove (2018). It hinges on a combination of a point mass probability and a probability density function as prior (denoted as the spike-and-slab prior). In the present paper, it is first carefully explained how the spike-and-slab prior is defined, and how results can be derived for which proofs were not given in Rouder, Haaf, and Vandekerckhove (2018). Next, it is shown that this spike-and-slab prior can be approximated by a pure probability density function with a rectangular peak around the center towering highly above the remainder of the density function. Finally, we will indicate how this 'hill-and-chimney' prior may in turn be approximated by fully continuous priors. In this way, it is shown that NHBT results can be approximated well by results from estimation using a strongly peaked prior, and it is noted that the estimation itself offers more than merely the posterior odds on which NHBT is based. Thus, it complies with the strong APA requirement of not just mentioning testing results but also offering effect size information. It also offers a transparent perspective on the NHBT approach employing a prior with a strong peak around the chosen point null hypothesis value.

摘要

在经典统计学中,零假设显著性检验(NHST)和置信区间的参数估计之间存在密切联系。然而,对于贝叶斯统计学,零假设贝叶斯检验(NHBT)和后验分布的贝叶斯估计之间的联系不那么直接,但确实存在,并且最近被 Rouder、Haaf 和 Vandekerckhove(2018)重申。它取决于点质量概率和概率密度函数的组合作为先验(表示为尖峰-平板先验)。在本文中,首先仔细解释了如何定义尖峰-平板先验,以及如何推导出 Rouder、Haaf 和 Vandekerckhove(2018)中未给出证明的结果。接下来,表明可以通过具有中心周围矩形峰值的纯概率密度函数来近似这个尖峰-平板先验,该峰值高高耸立在密度函数的其余部分之上。最后,我们将指出这种“山和烟囱”先验如何反过来可以通过完全连续的先验来近似。通过这种方式,表明 NHBT 结果可以通过使用强峰先验进行估计的结果很好地近似,并且注意到估计本身提供的不仅仅是 NHBT 所依据的后验优势比。因此,它符合 APA 的强烈要求,不仅要提及测试结果,还要提供效果大小信息。它还为采用围绕所选零假设值的强峰的先验的 NHBT 方法提供了一个透明的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/256a/10104944/9a60eb9c4d22/13423_2022_2164_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验