Department of Psychometrics and Statistics, Faculty of Behavioral and Social Sciences, University of Groningen.
Psychol Methods. 2019 Dec;24(6):774-795. doi: 10.1037/met0000221. Epub 2019 May 16.
Null hypothesis significance testing (NHST) has been under scrutiny for decades. The literature shows overwhelming evidence of a large range of problems affecting NHST. One of the proposed alternatives to NHST is using Bayes factors instead of p values. Here we denote the method of using Bayes factors to test point null models as "null hypothesis Bayesian testing" (NHBT). In this article we offer a wide overview of potential issues (limitations or sources of misinterpretation) with NHBT which is currently missing in the literature. We illustrate many of the shortcomings of NHBT by means of reproducible examples. The article concludes with a discussion of NHBT in particular and testing in general. In particular, we argue that posterior model probabilities should be given more emphasis than Bayes factors, because only the former provide direct answers to the most common research questions under consideration. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
零假设显著性检验(NHST)已经受到了几十年的审查。文献表明,大量影响 NHST 的问题的证据确凿。替代 NHST 的一种方法是使用贝叶斯因子而不是 p 值。在这里,我们将使用贝叶斯因子来检验零假设的方法称为“零假设贝叶斯检验”(NHBT)。在本文中,我们提供了对 NHBT 的广泛概述,目前文献中缺少对其潜在问题(局限性或误解来源)的探讨。我们通过可重复的示例来说明 NHBT 的许多缺点。文章最后讨论了 NHBT 以及一般的检验问题。特别是,我们认为后验模型概率应该比贝叶斯因子更受重视,因为只有前者能够直接回答正在考虑的最常见的研究问题。(PsycINFO 数据库记录(c)2019 APA,保留所有权利)。