Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:272-276. doi: 10.1109/EMBC48229.2022.9871118.
Multimodal brain networks characterize complex connectivities among different brain regions from both structural and functional aspects and provide a new means for mental disease analysis. Recently, Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data. However, how to employ GNNs to extract effective representations from brain networks in multiple modalities remains rarely explored. Moreover, as brain networks provide no initial node features, how to design informative node attributes and leverage edge weights for GNNs to learn is left unsolved. To this end, we develop a novel multiview GNN for multimodal brain networks. In particular, we treat each modality as a view for brain networks and employ contrastive learning for multimodal fusion. Then, we propose a GNN model which takes advantage of the message passing scheme by propagating messages based on degree statistics and brain region connectivities. Extensive experiments on two real-world disease datasets (HIV and Bipolar) demonstrate the effectiveness of our proposed method over state-of-the-art baselines.
多模态脑网络从结构和功能两个方面刻画了不同脑区之间的复杂连接关系,为精神疾病分析提供了一种新的手段。最近,图神经网络(GNN)已成为分析图结构数据的事实上的模型。然而,如何利用 GNN 从多模态脑网络中提取有效表示仍然很少被探索。此外,由于脑网络没有初始节点特征,如何设计信息丰富的节点属性并利用边权重来帮助 GNN 学习仍未得到解决。为此,我们开发了一种新的多视图 GNN 用于多模态脑网络。具体来说,我们将每种模态视为脑网络的一个视图,并采用对比学习进行多模态融合。然后,我们提出了一种 GNN 模型,该模型利用基于度统计和脑区连接的消息传递方案来传递消息。在两个真实疾病数据集(HIV 和双相情感障碍)上的广泛实验表明,我们的方法优于最先进的基线方法。