Mohammadi Hamed, Karwowski Waldemar
Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA.
Brain Sci. 2024 Dec 27;15(1):17. doi: 10.3390/brainsci15010017.
Brain connectivity analysis plays a crucial role in unraveling the complex network dynamics of the human brain, providing insights into cognitive functions, behaviors, and neurological disorders. Traditional graph-theoretical methods, while foundational, often fall short in capturing the high-dimensional and dynamic nature of brain connectivity. Graph Neural Networks (GNNs) have recently emerged as a powerful approach for this purpose, with the potential to improve diagnostics, prognostics, and personalized interventions. This review examines recent studies leveraging GNNs in brain connectivity analysis, focusing on key methodological advancements in multimodal data integration, dynamic connectivity, and interpretability across various imaging modalities, including fMRI, MRI, DTI, PET, and EEG. Findings reveal that GNNs excel in modeling complex, non-linear connectivity patterns and enable the integration of multiple neuroimaging modalities to provide richer insights into both healthy and pathological brain networks. However, challenges remain, particularly in interpretability, data scarcity, and multimodal integration, limiting the full clinical utility of GNNs. Addressing these limitations through enhanced interpretability, optimized multimodal techniques, and expanded labeled datasets is crucial to fully harness the potential of GNNs for neuroscience research and clinical applications.
脑连接性分析在揭示人类大脑复杂的网络动态方面起着至关重要的作用,为认知功能、行为和神经疾病提供了深入见解。传统的图论方法虽然是基础,但在捕捉脑连接性的高维度和动态特性方面往往存在不足。图神经网络(GNN)最近作为一种强大的方法应运而生,具有改善诊断、预后和个性化干预的潜力。本综述考察了最近在脑连接性分析中利用GNN的研究,重点关注多模态数据整合、动态连接性以及跨各种成像模态(包括功能磁共振成像(fMRI)、磁共振成像(MRI)、扩散张量成像(DTI)、正电子发射断层扫描(PET)和脑电图(EEG))的可解释性等关键方法学进展。研究结果表明,GNN在对复杂的非线性连接模式进行建模方面表现出色,并能够整合多种神经成像模态,从而为健康和病理性脑网络提供更丰富的见解。然而,挑战依然存在,特别是在可解释性、数据稀缺性和多模态整合方面,这限制了GNN的全面临床应用。通过增强可解释性、优化多模态技术和扩大标记数据集来解决这些限制,对于充分发挥GNN在神经科学研究和临床应用中的潜力至关重要。