Suppr超能文献

用于估计 EEG 源空间网络的方法:基于比较模拟的研究。

Methods Used to Estimate EEG Source-Space Networks: A Comparative Simulation-Based Study.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3590-3593. doi: 10.1109/EMBC48229.2022.9871047.

Abstract

Along with the study of the brain activity evoked by external stimuli, an important advance in current neuroscience involves understanding the spontaneous brain activity that occurs during resting conditions. Interestingly, the identification of the connectivity patterns in "resting-state" has been the subject of a great number of electrophysiology-based studies. In this context, the Electroencephalography (EEG) source connectivity method enables estimating resting-state cortical networks from scalp-EEG recordings. However, there is still no consensus over a unified pipeline adapted in all cases (e.g., type of task, a priori on studied networks) and numerous methodological questions remain unanswered. In order to address this problem, we simulated, using neural mass models, EEG data corresponding to the default mode network (DMN), the most widely studied resting-state network, and tested the effect of different channel densities, two inverse solutions and two functional connectivity measures on the correspondence between the reconstructed networks and the reference networks. Results showed that increasing the number of electrodes enhances the accuracy of the network reconstruction, and that eLORETA/PLV led to better accuracy than other inverse solution/connectivity measure combinations in terms of the correlation between reconstructed and reference connectivity matrices. This work has a wide range of implications in the field of electrophysiology connectomics, and is a step towards a convergence and standardization of approaches in this emerging field.

摘要

除了研究外部刺激引起的大脑活动外,当前神经科学的一个重要进展还涉及理解在休息状态下发生的自发大脑活动。有趣的是,“静息状态”连接模式的识别已经成为大量基于电生理学的研究的主题。在这种情况下,脑电图 (EEG) 源连接方法能够从头皮 EEG 记录中估计静息状态皮质网络。然而,在所有情况下(例如,任务类型、预先研究的网络)都没有统一的适应管道,并且仍然存在许多方法学问题尚未得到解答。为了解决这个问题,我们使用神经质量模型模拟了与默认模式网络 (DMN) 相对应的 EEG 数据,DMN 是研究最广泛的静息状态网络,并测试了不同通道密度、两种逆解和两种功能连接度量对重建网络与参考网络之间对应关系的影响。结果表明,增加电极数量可以提高网络重建的准确性,并且在重建和参考连接矩阵之间的相关性方面,eLORETA/PLV 比其他逆解/连接度量组合具有更好的准确性。这项工作在电生理学连接组学领域具有广泛的意义,是朝着这个新兴领域的方法收敛和标准化迈出的一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验