文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于评估脑电图源空间网络的脑尺度动力学平均场建模

Mean-Field Modeling of Brain-Scale Dynamics for the Evaluation of EEG Source-Space Networks.

作者信息

Allouch Sahar, Yochum Maxime, Kabbara Aya, Duprez Joan, Khalil Mohamad, Wendling Fabrice, Hassan Mahmoud, Modolo Julien

机构信息

Univ Rennes, LTSI - INSERM U1099, 35000, Rennes, France.

Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.

出版信息

Brain Topogr. 2022 Jan;35(1):54-65. doi: 10.1007/s10548-021-00859-9. Epub 2021 Jul 9.


DOI:10.1007/s10548-021-00859-9
PMID:34244910
Abstract

Understanding the dynamics of brain-scale functional networks at rest and during cognitive tasks is the subject of intense research efforts to unveil fundamental principles of brain functions. To estimate these large-scale brain networks, the emergent method called "electroencephalography (EEG) source connectivity" has generated increasing interest in the network neuroscience community, due to its ability to identify cortical brain networks with satisfactory spatio-temporal resolution, while reducing mixing and volume conduction effects. However, no consensus has been reached yet regarding a unified EEG source connectivity pipeline, and several methodological issues have to be carefully accounted to avoid pitfalls. Thus, a validation toolbox that provides flexible "ground truth" models is needed for an objective methods/parameters evaluation and, thereby an optimization of the EEG source connectivity pipeline. In this paper, we show how a recently developed large-scale model of brain-scale activity, named COALIA, can provide to some extent such ground truth by providing realistic simulations of source-level and scalp-level activity. Using a bottom-up approach, the model bridges cortical micro-circuitry and large-scale network dynamics. Here, we provide an example of the potential use of COALIA to analyze, in the context of epileptiform activity, the effect of three key factors involved in the "EEG source connectivity" pipeline: (i) EEG sensors density, (ii) algorithm used to solve the inverse problem, and (iii) functional connectivity measure. Results showed that a high electrode density (at least 64 channels) is required to accurately estimate cortical networks. Regarding the inverse solution/connectivity measure combination, the best performance at high electrode density was obtained using the weighted minimum norm estimate (wMNE) combined with the weighted phase lag index (wPLI). Although those results are specific to the considered aforementioned context (epileptiform activity), we believe that this model-based approach can be successfully applied to other experimental questions/contexts. We aim at presenting a proof-of-concept of the interest of COALIA in the network neuroscience field, and its potential use in optimizing the EEG source-space network estimation pipeline.

摘要

了解静息状态和认知任务期间脑尺度功能网络的动态变化,是揭示脑功能基本原理的众多研究工作的主题。为了估计这些大规模脑网络,一种新兴的方法——“脑电图(EEG)源连接性”,因其能够以令人满意的时空分辨率识别皮层脑网络,同时减少混合和容积传导效应,而在网络神经科学界引起了越来越多的关注。然而,关于统一的EEG源连接性流程尚未达成共识,并且必须仔细考虑几个方法学问题以避免陷阱。因此,需要一个提供灵活“真实情况”模型的验证工具箱,以便对方法/参数进行客观评估,从而优化EEG源连接性流程。在本文中,我们展示了一种最近开发的脑尺度活动大规模模型,名为COALIA,它如何通过提供源级和头皮级活动的逼真模拟,在一定程度上提供这样的真实情况。该模型采用自下而上的方法,将皮层微电路与大规模网络动态联系起来。在这里,我们提供了一个在癫痫样活动背景下,使用COALIA分析“EEG源连接性”流程中涉及的三个关键因素影响的潜在示例:(i)EEG传感器密度,(ii)用于解决逆问题的算法,以及(iii)功能连接性测量。结果表明,需要高电极密度(至少64个通道)才能准确估计皮层网络。关于逆解/连接性测量组合,在高电极密度下,使用加权最小范数估计(wMNE)与加权相位滞后指数(wPLI)相结合可获得最佳性能。尽管这些结果特定于上述所考虑的背景(癫痫样活动),但我们相信这种基于模型的方法可以成功应用于其他实验问题/背景。我们旨在展示COALIA在网络神经科学领域的价值的概念验证,以及其在优化EEG源空间网络估计流程中的潜在用途。

相似文献

[1]
Mean-Field Modeling of Brain-Scale Dynamics for the Evaluation of EEG Source-Space Networks.

Brain Topogr. 2022-1

[2]
Effect of channel density, inverse solutions and connectivity measures on EEG resting-state networks reconstruction: A simulation study.

Neuroimage. 2023-5-1

[3]
Identification of Interictal Epileptic Networks from Dense-EEG.

Brain Topogr. 2017-1

[4]
EEG source connectivity analysis: from dense array recordings to brain networks.

PLoS One. 2014-8-12

[5]
Effect of Inverse Solutions, Connectivity Measures, and Node Sizes on EEG Source Network: A Simultaneous EEG Study.

IEEE Trans Neural Syst Rehabil Eng. 2024

[6]
Assessing HD-EEG functional connectivity states using a human brain computational model.

J Neural Eng. 2022-10-11

[7]
Identification of epileptogenic networks from dense EEG: A model-based study.

Annu Int Conf IEEE Eng Med Biol Soc. 2015-8

[8]
Methods Used to Estimate EEG Source-Space Networks: A Comparative Simulation-Based Study.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[9]
Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.

J Vis Exp. 2012-6-26

[10]
Optimizing EEG Source Reconstruction with Concurrent fMRI-Derived Spatial Priors.

Brain Topogr. 2022-5

引用本文的文献

[1]
Successful reproduction of a large EEG study across software packages.

Neuroimage Rep. 2023-5-27

[2]
Realistic Subject-Specific Simulation of Resting State Scalp EEG Based on Physiological Model.

Brain Topogr. 2025-5-13

[3]
Identifying good practices for detecting inter-regional linear functional connectivity from EEG.

Neuroimage. 2023-8-15

[4]
M/EEG Dynamics Underlying Reserve, Resilience, and Maintenance in Aging: A Review.

Front Psychol. 2022-5-25

[5]
A Roadmap for Computational Modelling of M/EEG.

Brain Topogr. 2022-1

本文引用的文献

[1]
A systematic evaluation of source reconstruction of resting MEG of the human brain with a new high-resolution atlas: Performance, precision, and parcellation.

Hum Brain Mapp. 2021-10-1

[2]
Quantifying the Effect of Demixing Approaches on Directed Connectivity Estimated Between Reconstructed EEG Sources.

Brain Topogr. 2019-4-10

[3]
SimiNet: A Novel Method for Quantifying Brain Network Similarity.

IEEE Trans Pattern Anal Mach Intell. 2018-9

[4]
The dynamic functional core network of the human brain at rest.

Sci Rep. 2017-6-7

[5]
Network neuroscience.

Nat Neurosci. 2017-2-23

[6]
Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations.

Neuroimage. 2017-5-15

[7]
Measurement of dynamic task related functional networks using MEG.

Neuroimage. 2017-2-1

[8]
Identification of Interictal Epileptic Networks from Dense-EEG.

Brain Topogr. 2017-1

[9]
How reliable are MEG resting-state connectivity metrics?

Neuroimage. 2016-9

[10]
A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies.

Brain Topogr. 2016-6-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索