Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:966-970. doi: 10.1109/EMBC48229.2022.9871716.
Cytokine release syndrome (CRS) is a noninfec-tious systemic inflammatory response syndrome condition and a principle severe adverse event common in oncology patients treated with immunotherapies. Accurate monitoring and timely prediction of CRS severity remain a challenge. This study presents an XGBoost-based machine learning algorithm for forecasting CRS severity (no CRS, mild- and severe-CRS classes) in the 24 hours following the time of prediction utilizing the common vital signs and Glasgow coma scale (GCS) questionnaire inputs. The CRS algorithm was developed and evaluated on a cohort of patients (n=1,139) surgically treated for neoplasm with no ICD9 codes for infection or sepsis during a collective 9,892 patient-days of monitoring in ICU settings. Different models were trained with unique feature sets to mimic practical monitoring environments where different types of data availability will exist. The CRS models that incorporated all time series features up to the prediction time showcased a micro-average area under curve (AUC) statistic for the receiver operating characteristic curve (ROC) of 0.94 for the 3 classes of CRS grades. Models developed on a second cohort requiring data within the 24 hours preceding prediction time showcased a relatively lower 0.88 micro-average AUROC as these models did not benefit from implicit information in the data availability. Systematic removal of blood pressure and/or GCS inputs revealed significant decreases (p<0.05) in model performances that confirm the importance of such features for CRS prediction. Accurate CRS prediction and timely intervention can reverse CRS adverse events and maximize the benefit of immunotherapies in oncology patients.
细胞因子释放综合征(CRS)是一种非传染性全身炎症反应综合征,也是接受免疫疗法治疗的肿瘤患者常见的主要严重不良事件。准确监测和及时预测 CRS 严重程度仍然是一个挑战。本研究提出了一种基于 XGBoost 的机器学习算法,用于利用常见生命体征和格拉斯哥昏迷量表(GCS)问卷输入,在预测时间后 24 小时内预测 CRS 严重程度(无 CRS、轻度和重度 CRS 类别)。该 CRS 算法是在一组接受手术治疗肿瘤且在 ICU 监测期间没有 ICD9 感染或败血症代码的患者(n=1139)中开发和评估的,共监测了 9892 患者天。不同的模型使用独特的特征集进行训练,以模拟实际监测环境,在这种环境中,将存在不同类型的数据可用性。纳入预测时间之前的所有时间序列特征的 CRS 模型,其接收器操作特征曲线(ROC)的微平均 AUC 统计量为 0.94,用于 3 种 CRS 等级类别。在需要预测时间前 24 小时内数据的第二组患者上开发的模型,其微平均 AUC 相对较低,为 0.88,因为这些模型无法从数据可用性中获得隐含信息。系统地去除血压和/或 GCS 输入会导致模型性能显著下降(p<0.05),这证实了这些特征对 CRS 预测的重要性。准确预测 CRS 并及时干预可以逆转 CRS 不良事件,使肿瘤患者的免疫疗法受益最大化。