Suppr超能文献

连续监测在急性护理环境中预测全因30天再入院的作用:一项试点研究。

The role of continuous monitoring in acute-care settings for predicting all-cause 30-day hospital readmission: A pilot study.

作者信息

Pettinati Michael Joseph, Vattis Kyriakos, Mitchell Henry, Rosario Nicole Alexis, Levine David Michael, Selvaraj Nandakumar

机构信息

Biofourmis Inc, Needham, MA, USA.

Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Heliyon. 2025 Jan 15;11(2):e41994. doi: 10.1016/j.heliyon.2025.e41994. eCollection 2025 Jan 30.

Abstract

BACKGROUND

Accurate prediction and prevention of hospital readmission remains a clinical challenge. The influence of different data sources, including remotely monitored continuous vital signs and activity, on machine learning (ML) models' performances is examined for predicting all-cause unplanned 30-day readmission.

METHODS

Patients (n = 354) recruited in the emergency department and admitted to acute care at either hospital or home hospital settings are analyzed. Data sources included continuous vital signs and activity, electronic health record (EHR) data - episodic physiological monitoring of laboratory and vital signs, demographics, hospital utilization history, and quality of life survey measures. Five (5) machine learning classifiers were systematically trained by varying input data sources for readmission. Performances of ML models as well as the standard-of-care HOSPITAL score for readmissions were assessed with area under the receiver operating characteristic curve (AUROC) and area under precision-recall curve (AUPRC) statistics.

RESULTS

There were 29 patients readmitted out of the 354 total included patients (an 8.2 % readmission rate). The average five-fold cross-validation AUROC and AUPRC scores of the five readmission models ranged from 0.76 to 0.84 (P > .05) and 0.23-0.49 (P < .05), respectively. The model input with episodic physiological monitoring (vitals and labs) had an AUPRC of 0.23 ± 0.07, while the model input with continuous vitals and activity data and episodic vitals and laboratory measurements had an AUPRC of as 0.49 ± 0.10 (P < .005). The HOSPITAL score had an AUROC of 0.62 and AUPRC of 0.16 in this pilot study.

CONCLUSIONS

The systematic ML modeling and analysis showcased diversity in predictive power and performances of patient data sources for predicting readmission. This pilot study suggests continuous vital signs and activity data, when added to episodic physiological monitoring, boosts performance. The HOSPITAL score shows low predictive power for readmission in this population. Predictive modeling of unplanned 30-day readmission improves with continuous vital signs and activity monitoring.

摘要

背景

准确预测和预防医院再入院仍然是一项临床挑战。本研究探讨了包括远程监测的连续生命体征和活动在内的不同数据源对机器学习(ML)模型预测全因非计划30天再入院性能的影响。

方法

分析了在急诊科招募并在医院或家庭医院环境中接受急性护理的患者(n = 354)。数据源包括连续生命体征和活动、电子健康记录(EHR)数据——实验室和生命体征的间歇性生理监测、人口统计学、医院利用史和生活质量调查指标。通过改变再入院的输入数据源,系统地训练了五(5)种机器学习分类器。使用受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)统计量评估ML模型的性能以及再入院的标准护理HOSPITAL评分。

结果

在纳入的354例患者中,有29例再次入院(再入院率为8.2%)。五个再入院模型的平均五折交叉验证AUROC和AUPRC评分分别为0.76至0.84(P > 0.05)和0.23 - 0.49(P < 0.05)。间歇性生理监测(生命体征和实验室检查)输入的模型AUPRC为0.23 ± 0.07,而连续生命体征和活动数据以及间歇性生命体征和实验室测量输入的模型AUPRC为0.49 ± 0.10(P < 0.005)。在这项初步研究中,HOSPITAL评分的AUROC为0.62且AUPRC为0.16。

结论

系统的ML建模和分析展示了患者数据源在预测再入院方面的预测能力和性能的多样性。这项初步研究表明,将连续生命体征和活动数据添加到间歇性生理监测中可提高性能。HOSPITAL评分在该人群中对再入院的预测能力较低。连续生命体征和活动监测可改善非计划30天再入院的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d93/11787643/44d6ebc19df3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验