Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2203-2207. doi: 10.1109/EMBC48229.2022.9871784.
Experienced radiologists can accurately diagnose relevant diseases by observing the cardiopulmonary region in chest X-ray images. Advances in deep learning techniques enable the prediction of lesions in chest X-ray images. However, deep learning-based algorithms usually require a large amount of training data, and it lacks an effective method for data generation and augmentation. In this paper, we propose a Lung Segmentation Reconstruction (LSR) module. A healthy chest X-ray image is generated based on the abnormal image as a reference. With the generated healthy reference, we propose a novel way of data augmentation for chest X-ray images. The whole images, lung regions and abnormal regions are stacked together and fed into a classification model to make a credible diagnosis. Extensive experiments have been conducted on the public dataset CheXpert. Experimental results show that our proposed abnormality enhancement can help the baseline models achieve better performance on consolidation and pleural effusion. These results highlight the potential value of the large number of healthy chest X-ray images in the dataset and the combination of different regions of chest X-ray images for prediction.
有经验的放射科医生可以通过观察胸部 X 光图像中的心肺区域准确诊断相关疾病。深度学习技术的进步使得预测胸部 X 光图像中的病变成为可能。然而,基于深度学习的算法通常需要大量的训练数据,并且缺乏有效的数据生成和扩充方法。在本文中,我们提出了一个 Lung Segmentation Reconstruction(LSR)模块。该模块基于异常图像作为参考生成健康的胸部 X 光图像。利用生成的健康参考图像,我们提出了一种新颖的数据扩充方法来增强胸部 X 光图像。将整幅图像、肺部区域和异常区域堆叠在一起,并输入到分类模型中,从而做出可信的诊断。我们在公共数据集 CheXpert 上进行了广泛的实验。实验结果表明,我们提出的异常增强方法可以帮助基线模型在实变和胸腔积液这两种病症上取得更好的性能。这些结果突出了数据集中大量健康的胸部 X 光图像的潜在价值,以及结合胸部 X 光图像的不同区域进行预测的潜力。