Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:950-956. doi: 10.1109/EMBC48229.2022.9871054.
Type 1 Diabetes (T1D) is a chronic autoimmune disease, which requires the use of exogenous insulin for glucose regulation. In current hybrid closed-loop systems, meal entry is manual which adds cognitive burden to the persons living with T1D. In this study, we proposed a control system based on Proximal Policy Optimisation (PPO) that controls both basal and bolus insulin infusion and only requires meal announcement, thus eliminating the need for carbohydrate estimation. We evaluated the system on a challenging meal scenario, using an open-source simulator based on the UVA/Padova 2008 model and achieved a mean Time in Range value of 65% for the adult subject cohort, while maintaining a moderate hypoglycemic and hyperglycemic risk profile. The approach shows promise and welcomes further research towards the translation to a real-life artificial pancreas. Clinical relevance- This was an in-silico analysis towards the development of an autonomous artificial pancreas system for glucose control. The proposed system show promise in eliminating the need for estimating the carbohydrate content in meals.
1 型糖尿病(T1D)是一种慢性自身免疫性疾病,需要使用外源性胰岛素来调节血糖。在当前的混合闭环系统中,进餐需要手动输入,这给 T1D 患者增加了认知负担。在这项研究中,我们提出了一种基于近端策略优化(PPO)的控制系统,该系统可以控制基础胰岛素和推注胰岛素的输注,只需要宣布进餐,从而消除了对碳水化合物估计的需求。我们使用基于 UVA/Padova 2008 模型的开源模拟器评估了该系统在具有挑战性的进餐场景下的性能,对于成年患者队列,平均血糖达标时间达到 65%,同时保持了适度的低血糖和高血糖风险特征。该方法具有很大的潜力,需要进一步研究以将其转化为真正的人工胰腺。临床意义-这是朝着开发用于血糖控制的自主人工胰腺系统的计算机模拟分析。该系统有望消除对进餐中碳水化合物含量进行估计的需求。