Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2049-2052. doi: 10.1109/EMBC48229.2022.9871260.
Biomedical image datasets can be imbalanced due to the rarity of targeted diseases. Generative Adversarial Networks play a key role in addressing this imbalance by enabling the generation of synthetic images to augment datasets. It is important to generate synthetic images that incorporate a diverse range of features to accurately represent the distribution of features present in the training imagery. Furthermore, the absence of diverse features in synthetic images can degrade the performance of machine learning classifiers. The mode collapse problem impacts Generative Adversarial Networks' capacity to generate diversified images. Mode collapse comes in two varieties: intra-class and inter-class. In this paper, the intra-class mode collapse problem is investigated, and its subsequent impact on the diversity of synthetic X-ray images is evaluated. This work contributes an empirical demonstration of the benefits of integrating the adaptive input-image normalization for the Deep Convolutional GAN to alleviate the intra-class mode collapse problem. Results demonstrate that the DCGAN with adaptive input-image normalization outperforms DCGAN with un-normalized X-ray images as evident by the superior diversity scores.
生物医学图像数据集可能由于目标疾病的罕见性而出现不平衡。生成对抗网络通过生成合成图像来扩充数据集,在解决这种不平衡方面发挥了关键作用。生成的合成图像需要包含各种特征,以准确表示训练图像中存在的特征分布。此外,合成图像中缺乏多样化的特征会降低机器学习分类器的性能。模式崩溃问题影响生成对抗网络生成多样化图像的能力。模式崩溃有两种类型:类内和类间。在本文中,研究了类内模式崩溃问题,并评估了其对合成 X 射线图像多样性的后续影响。这项工作通过实证证明了整合自适应输入图像归一化对缓解类内模式崩溃问题的 Deep Convolutional GAN 的好处。结果表明,具有自适应输入图像归一化的 DCGAN 优于具有未归一化 X 射线图像的 DCGAN,这一点从更好的多样性得分上可以明显看出。