Suppr超能文献

通过固定化锆(IV)亲和色谱和质谱对天蓝色链霉菌进行定量磷酸化蛋白质组分析,揭示了新的受调控的蛋白质磷酸化位点和序列基序。

Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs.

作者信息

Alonso-Fernández Sergio, Arribas-Díez Ignacio, Fernández-García Gemma, González-Quiñónez Nathaly, Jensen Ole N, Manteca Angel

机构信息

Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.

Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

出版信息

J Proteomics. 2022 Oct 30;269:104719. doi: 10.1016/j.jprot.2022.104719. Epub 2022 Sep 8.

Abstract

Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.

摘要

链霉菌是多细胞革兰氏阳性细菌,能产生许多生物活性化合物,包括抗生素、抗肿瘤药物和免疫抑制剂。尽管已知丝氨酸/苏氨酸/酪氨酸的蛋白质磷酸化可调节形态分化和特殊代谢过程,但链霉菌的磷酸化蛋白质组在很大程度上仍未被探索。我们在此通过优化的固定化锆(IV)亲和色谱法和质谱法扩展了天蓝色链霉菌的磷酸化蛋白质组,以鉴定营养期和孢子形成期的磷酸化蛋白质。我们绘制了361个磷酸化位点(41%为pSer,56.2%为pThr,2.8%为pTyr),并在源自187个磷酸化蛋白质的351个磷酸肽中发现了四个新的苏氨酸磷酸化基序(“Kxxxx(pT)xxxxK”、“DxE(pT)”、“D(pT)”和“Exxxxx(pT)”)。我们鉴定出154个新的磷酸化蛋白质,从而使经实验验证的链霉菌磷酸化蛋白质数量几乎增加了一倍。新的磷酸化蛋白质包括细胞分裂蛋白(FtsK、CrgA)和特殊代谢调节因子(ArgR、AfsR、CutR和HrcA),它们在营养期和产生抗生素的孢子形成期的磷酸化情况有所不同。参与初级代谢的磷酸化蛋白质包括27个在营养期被磷酸化的新核糖体蛋白。这些蛋白质的磷酸化可能参与了链霉菌发育和次级代谢中复杂且尚未完全理解的调控过程。我们得出结论,Zr(IV)-IMAC是一种研究细菌中蛋白质磷酸化和调控的高效且灵敏的方法,能增强我们对细菌信号传导的理解。意义:临床上使用的三分之二的次级代谢产物,尤其是抗生素,是在链霉菌菌株中发现的。抗生素耐药性已成为临床的主要挑战之一,临床上迫切需要新的抗生素。下一代测序分析表明,链霉菌含有许多隐秘的次级代谢产物途径,即在实验室中未表达的途径。次级代谢与菌丝分化和孢子形成紧密相关,理解链霉菌分化是工业微生物学的主要挑战之一,目的是在实验室中激活隐秘途径的表达。丝氨酸/苏氨酸/酪氨酸的蛋白质磷酸化调节发育和次级代谢,但链霉菌的磷酸化蛋白质组在很大程度上仍未被探索。先前对天蓝色链霉菌的磷酸化蛋白质组研究使用TiO亲和富集和LC-MS/MS共鉴定出184个链霉菌磷酸化蛋白质。在此,我们首次使用锆(IV)亲和色谱法和质谱法,鉴定出186个天蓝色链霉菌磷酸化蛋白质。这些磷酸化蛋白质中的大多数(154个)在先前使用TiO亲和富集的磷酸化蛋白质组研究中未被鉴定出来。从而使经实验验证的链霉菌磷酸化蛋白质数量几乎增加了一倍。Zr(IV)-IMAC亲和色谱法在大肠杆菌中也有效,能够鉴定出TiO亲和色谱法未鉴定出的磷酸化蛋白质。我们得出结论,Zr(IV)-IMAC是一种用于研究细菌中蛋白质磷酸化和调控的高效且灵敏的方法,以增强我们对细菌信号网络的理解。此外,鉴定出的新的链霉菌磷酸化蛋白质将有助于设计进一步的研究工作,以理解和调节链霉菌次级代谢的激活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验