Suppr超能文献

基于超声影像组学模型的列线图预测胃肠道间质瘤的风险分层

Ultrasound radiomics model-based nomogram for predicting the risk Stratification of gastrointestinal stromal tumors.

作者信息

Zhuo Minling, Guo Jingjing, Tang Yi, Tang Xiubin, Qian Qingfu, Chen Zhikui

机构信息

Department of Ultrasound, Fujian Medical University Affiliated Union Hospital, Fuzhou, China.

出版信息

Front Oncol. 2022 Aug 26;12:905036. doi: 10.3389/fonc.2022.905036. eCollection 2022.

Abstract

This study aimed to develop and evaluate a nomogram based on an ultrasound radiomics model to predict the risk grade of gastrointestinal stromal tumors (GISTs). 216 GIST patients pathologically diagnosed between December 2016 and December 2021 were reviewed and divided into a training cohort (n = 163) and a validation cohort (n = 53) in a ratio of 3:1. The tumor region of interest was depicted on each patient's ultrasound image using ITK-SNAP, and the radiomics features were extracted. By filtering unstable features and using Spearman's correlation analysis, and the least absolute shrinkage and selection operator algorithm, a radiomics score was derived to predict the malignant potential of GISTs. a radiomics nomogram that combines the radiomics score and clinical ultrasound predictors was constructed and assessed in terms of calibration, discrimination, and clinical usefulness. The radiomics score from ultrasound images was significantly associated with the malignant potential of GISTs. The radiomics nomogram was superior to the clinical ultrasound nomogram and the radiomics score, and it achieved an AUC of 0.90 in the validation cohort. Based on the decision curve analysis, the radiomics nomogram was found to be more clinically significant and useful. A nomogram consisting of radiomics score and the maximum tumor diameter demonstrated the highest accuracy in the prediction of risk grade in GISTs. The outcomes of our study provide vital insights for important preoperative clinical decisions.

摘要

本研究旨在开发并评估一种基于超声影像组学模型的列线图,以预测胃肠道间质瘤(GIST)的风险等级。回顾性分析了2016年12月至2021年12月期间病理诊断的216例GIST患者,并按照3:1的比例将其分为训练队列(n = 163)和验证队列(n = 53)。使用ITK-SNAP在每位患者的超声图像上描绘感兴趣的肿瘤区域,并提取影像组学特征。通过筛选不稳定特征、使用Spearman相关性分析以及最小绝对收缩和选择算子算法,得出影像组学评分以预测GIST的恶性潜能。构建了一个结合影像组学评分和临床超声预测指标的影像组学列线图,并从校准、鉴别能力和临床实用性方面进行了评估。超声图像的影像组学评分与GIST的恶性潜能显著相关。影像组学列线图优于临床超声列线图和影像组学评分,在验证队列中其曲线下面积(AUC)达到0.90。基于决策曲线分析,发现影像组学列线图具有更高的临床意义和实用性。由影像组学评分和肿瘤最大直径组成的列线图在预测GIST风险等级方面显示出最高的准确性。我们的研究结果为重要的术前临床决策提供了重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验