Suppr超能文献

基于影像组学特征预测胃肠道间质瘤患者的无复发生存和辅助治疗获益。

Prediction of recurrence-free survival and adjuvant therapy benefit in patients with gastrointestinal stromal tumors based on radiomics features.

机构信息

Department of Gastric Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, Fujian Province, China.

Fujian Provincial Minimally Invasive Medical Center, Fujian, China.

出版信息

Radiol Med. 2022 Oct;127(10):1085-1097. doi: 10.1007/s11547-022-01549-7. Epub 2022 Sep 4.

Abstract

OBJECTIVE

Development and validation of a radiomics nomogram for predicting recurrence and adjuvant therapy benefit populations in high/intermediate-risk gastrointestinal stromal tumors (GISTs) based on computed tomography (CT) radiomic features.

METHODS

Retrospectively collected from 2009.07 to 2015.09, 220 patients with pathological diagnosis of intermediate- and high-risk stratified gastrointestinal stromal tumors and received imatinib treatment were randomly divided into (6:4) training cohort and validation cohort. The 2D-tumor region of interest (ROI) was delineated from the portal-phase images on contrast-enhanced (CE) CT, and radiological features were extracted. The most valuable radiological features were obtained using a Lasso-Cox regression model. Integrated construction was conducted of nomograms of radiomics characteristics to predict recurrence-free survival (RFS) in patients receiving adjuvant therapy.

RESULTS

Eight radiomic signatures were finally selected. The area under the curve (AUC) of the radiomics signature model for predicting 3-, 5-, and 7-year RFS in the training and validation cohorts (training cohort AUC = 0.80, 0.84, 0.76; validation cohort AUC = 0.78, 0.80, 0.76). The constructed radiomics nomogram was more accurate than the clinicopathological nomogram for predicting RFS in GIST (C-index: 0.864 95%CI, 0.817-0.911 vs. 0.733 95%CI, 0.675-0.791). Kaplan-Meier survival curve analysis showed a greater benefit from adjuvant therapy in patients with high radiomics scores (training cohort: p < 0.0001; validation cohort: p = 0.017), while there was no significant difference in the low-score group (p > 0.05).

CONCLUSION

In this study, a nomogram constructed based on preoperative CT radiomics features could be used for RFS prediction in high/intermediate-risk GISTs and assist the clinical decision-making for GIST patients.

摘要

目的

基于 CT 放射组学特征,开发并验证一种用于预测高/中危胃肠道间质瘤(GIST)患者复发和辅助治疗获益人群的放射组学列线图。

方法

回顾性收集 2009.07 年至 2015.09 年间经病理诊断为中高危分层 GIST 并接受伊马替尼治疗的 220 例患者,随机分为(6:4)训练队列和验证队列。从增强 CT 门静脉期图像上勾画 2D 肿瘤感兴趣区(ROI),提取影像学特征。使用 Lasso-Cox 回归模型获得最有价值的影像学特征。对列线图的放射组学特征进行综合构建,以预测接受辅助治疗患者的无复发生存率(RFS)。

结果

最终筛选出 8 个放射组学特征。在训练和验证队列中,放射组学特征模型预测 3、5 和 7 年 RFS 的曲线下面积(AUC)分别为(训练队列 AUC=0.80、0.84、0.76;验证队列 AUC=0.78、0.80、0.76)。与 GIST 的临床病理列线图相比,构建的放射组学列线图预测 RFS 更准确(C 指数:0.864,95%CI:0.817-0.911 vs. 0.733,95%CI:0.675-0.791)。Kaplan-Meier 生存曲线分析显示,高放射组学评分患者接受辅助治疗获益更大(训练队列:p<0.0001;验证队列:p=0.017),而低评分组无显著差异(p>0.05)。

结论

本研究基于术前 CT 放射组学特征构建的列线图可用于预测高/中危 GIST 的 RFS,并为 GIST 患者的临床决策提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验