Suppr超能文献

机器学习有助于加深对金属系统中玻璃形成的理解。

Machine-learning improves understanding of glass formation in metallic systems.

作者信息

Forrest Robert M, Greer A Lindsay

机构信息

Department of Materials Science and Metallurgy, University of Cambridge UK

出版信息

Digit Discov. 2022 Jun 14;1(4):476-489. doi: 10.1039/d2dd00026a. eCollection 2022 Aug 8.

Abstract

Glass-forming ability (GFA) in metallic systems remains a little-understood property. Experimental work on bulk metallic glasses (BMGs) is guided by many empirical criteria, which are often of limited predictive value. This work uses machine-learning both to produce predictive models for the GFA of alloy compositions, and to reveal insights useful for furthering theoretical understanding of GFA. Our machine-learning models apply a novel neural-network architecture to predict simultaneously the liquidus temperature, glass-transition temperature, crystallization-onset temperature, maximum glassy casting diameter, and probability of glass formation, for any given alloy. Feature permutation is used to identify the features of importance in the black-box neural network, recovering Inoue's empirical rules, and highlighting the effect of discontinuous Wigner-Seitz boundary electron-densities on atomic radii. With certain combinations of elements, atomic radii of different species contract and expand to balance electron-density discontinuities such that the overall difference in atomic radii increases, improving GFA. We calculate adjusted radii the Thomas-Fermi model and use this insight to propose promising novel glass-forming alloy systems.

摘要

金属系统中的玻璃形成能力(GFA)仍是一种了解较少的特性。大块金属玻璃(BMG)的实验工作由许多经验标准指导,而这些标准的预测价值往往有限。这项工作利用机器学习来生成合金成分GFA的预测模型,并揭示有助于进一步从理论上理解GFA的见解。我们的机器学习模型应用一种新颖的神经网络架构,以同时预测任何给定合金的液相线温度、玻璃化转变温度、结晶起始温度、最大玻璃态铸造直径和玻璃形成概率。特征排列用于识别黑箱神经网络中的重要特征,恢复井上的经验规则,并突出不连续的维格纳-赛茨边界电子密度对原子半径的影响。通过某些元素组合,不同物种的原子半径收缩和扩张以平衡电子密度不连续性,从而使原子半径的总体差异增加,提高了GFA。我们根据托马斯-费米模型计算调整后的半径,并利用这一见解提出有前景的新型玻璃形成合金体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a486/9358760/136337215338/d2dd00026a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验