Zagzoog Ayat, Cabecinha Ashley, Abramovici Hanan, Laprairie Robert B
College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
Office of Cannabis Science and Surveillance, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada.
Front Pharmacol. 2022 Aug 26;13:956030. doi: 10.3389/fphar.2022.956030. eCollection 2022.
contains more than 120 cannabinoids and 400 terpene compounds (i.e., phytomolecules) present in varying amounts. is increasingly available for legal medicinal and non-medicinal use globally, and with increased access comes the need for a more comprehensive understanding of the pharmacology of phytomolecules. The main transducer of the intoxicating effects of is the type 1 cannabinoid receptor (CB1R). ∆-tetrahydrocannabinolic acid (∆-THCa) is often the most abundant cannabinoid present in many cultivars of . Decarboxylation converts ∆-THCa to ∆-THC, which is a CB1R partial agonist Understanding the complex interplay of phytomolecules-often referred to as "the entourage effect"-has become a recent and major line of inquiry in cannabinoid research. Additionally, this interest is extending to other non- phytomolecules, as the diversity of available products grows. Here, we chose to focus on whether 10 phytomolecules (∆-THC, ∆-THC, 11-OH-∆-THC, cannabinol, curcumin, epigallocatechin gallate, olivetol, palmitoylethanolamide, piperine, and quercetin) alter CB1R-dependent signaling with or without a co-treatment of ∆-THC. Phytomolecules were screened for their binding to CB1R, inhibition of forskolin-stimulated cAMP accumulation, and βarrestin2 recruitment in Chinese hamster ovary cells stably expressing human CB1R. Select compounds were assessed further for cataleptic, hypothermic, and anti-nociceptive effects on male mice. Our data revealed partial agonist activity for the cannabinoids tested, as well as modulation of ∆-THC-dependent binding and signaling properties of phytomolecules and . These data represent a first step in understanding the complex pharmacology of - and non-derived phytomolecules at CB1R and determining whether these interactions may affect the physiological outcomes, adverse effects, and abuse liabilities associated with the use of these compounds.
含有120多种大麻素和400种萜类化合物(即植物分子),其含量各不相同。在全球范围内,其合法用于医疗和非医疗用途的情况越来越普遍,随着获取途径的增加,人们需要更全面地了解植物分子的药理学。大麻致醉作用的主要传导器是1型大麻素受体(CB1R)。∆-四氢大麻酚酸(∆-THCa)通常是许多大麻品种中含量最丰富的大麻素。脱羧作用将∆-THCa转化为∆-THC,后者是一种CB1R部分激动剂。了解植物分子之间复杂的相互作用——通常被称为“协同效应”——已成为大麻素研究中近期的一个主要研究方向。此外,随着可用大麻产品种类的增加,这种兴趣也扩展到了其他非大麻植物分子。在这里,我们选择关注10种植物分子(∆-THC、∆-THC、11-羟基-∆-THC、大麻酚、姜黄素、表没食子儿茶素没食子酸酯、橄榄醇、棕榈酰乙醇胺、胡椒碱和槲皮素)在有或没有与∆-THC共同处理的情况下是否会改变CB1R依赖性信号传导。在中国仓鼠卵巢细胞中稳定表达人CB1R,对植物分子与CB1R的结合、对福司可林刺激的环磷酸腺苷积累的抑制作用以及β-arrestin2募集情况进行筛选。对选定的化合物进一步评估其对雄性小鼠的僵住、体温过低和抗伤害感受作用。我们的数据揭示了所测试大麻素的部分激动剂活性,以及对∆-THC依赖性结合和植物分子 和 的信号特性的调节作用。这些数据代表了理解大麻及非大麻衍生植物分子在CB1R处复杂药理学以及确定这些相互作用是否可能影响与使用这些化合物相关的生理结果、不良反应和滥用倾向的第一步。