文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种通过阿拉伯语推文进行自杀检测的优化深度学习方法。

An optimized deep learning approach for suicide detection through Arabic tweets.

作者信息

Baghdadi Nadiah A, Malki Amer, Magdy Balaha Hossam, AbdulAzeem Yousry, Badawy Mahmoud, Elhosseini Mostafa

机构信息

Nursing Management and Education Department, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

College of Computer Science and Engineering, Taibah University, Yanbu, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2022 Aug 23;8:e1070. doi: 10.7717/peerj-cs.1070. eCollection 2022.


DOI:10.7717/peerj-cs.1070
PMID:36092010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9455273/
Abstract

Many people worldwide suffer from mental illnesses such as major depressive disorder (MDD), which affect their thoughts, behavior, and quality of life. Suicide is regarded as the second leading cause of death among teenagers when treatment is not received. Twitter is a platform for expressing their emotions and thoughts about many subjects. Many studies, including this one, suggest using social media data to track depression and other mental illnesses. Even though Arabic is widely spoken and has a complex syntax, depressive detection methods have not been applied to the language. The Arabic tweets dataset should be scraped and annotated first. Then, a complete framework for categorizing tweet inputs into two classes (such as Normal or Suicide) is suggested in this study. The article also proposes an Arabic tweet preprocessing algorithm that contrasts lemmatization, stemming, and various lexical analysis methods. Experiments are conducted using Twitter data scraped from the Internet. Five different annotators have annotated the data. Performance metrics are reported on the suggested dataset using the latest Bidirectional Encoder Representations from Transformers (BERT) and Universal Sentence Encoder (USE) models. The measured performance metrics are balanced accuracy, specificity, F1-score, IoU, ROC, Youden Index, NPV, and weighted sum metric (WSM). Regarding USE models, the best-weighted sum metric (WSM) is 80.2%, and with regards to Arabic BERT models, the best WSM is 95.26%.

摘要

全球许多人患有精神疾病,如重度抑郁症(MDD),这些疾病会影响他们的思想、行为和生活质量。在未接受治疗的情况下,自杀被视为青少年的第二大死因。推特是一个表达他们对许多主题的情感和想法的平台。包括本研究在内的许多研究都建议利用社交媒体数据来追踪抑郁症和其他精神疾病。尽管阿拉伯语广泛使用且语法复杂,但抑郁检测方法尚未应用于该语言。首先应抓取并标注阿拉伯语推文数据集。然后,本研究提出了一个将推文输入分类为两类(如正常或自杀)的完整框架。文章还提出了一种阿拉伯语推文预处理算法,该算法对比了词形还原、词干提取和各种词汇分析方法。使用从互联网上抓取的推特数据进行实验。五名不同的注释者对数据进行了标注。使用最新的来自变换器的双向编码器表示(BERT)和通用句子编码器(USE)模型,在建议的数据集上报告性能指标。测量的性能指标包括平衡准确率、特异性、F1分数、交并比(IoU)、ROC、约登指数、阴性预测值和加权和指标(WSM)。关于USE模型,最佳加权和指标(WSM)为80.2%,关于阿拉伯语BERT模型,最佳WSM为95.26%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/31f3cd82544b/peerj-cs-08-1070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/d73d3fbae2be/peerj-cs-08-1070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/e9e696f1b376/peerj-cs-08-1070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/4f1bb0a994ff/peerj-cs-08-1070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/bf1dbb29fd02/peerj-cs-08-1070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/43a2c6d862c7/peerj-cs-08-1070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/301f9801dddc/peerj-cs-08-1070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/31f3cd82544b/peerj-cs-08-1070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/d73d3fbae2be/peerj-cs-08-1070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/e9e696f1b376/peerj-cs-08-1070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/4f1bb0a994ff/peerj-cs-08-1070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/bf1dbb29fd02/peerj-cs-08-1070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/43a2c6d862c7/peerj-cs-08-1070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/301f9801dddc/peerj-cs-08-1070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd65/9455273/31f3cd82544b/peerj-cs-08-1070-g007.jpg

相似文献

[1]
An optimized deep learning approach for suicide detection through Arabic tweets.

PeerJ Comput Sci. 2022-8-23

[2]
Social Media Monitoring of the COVID-19 Pandemic and Influenza Epidemic With Adaptation for Informal Language in Arabic Twitter Data: Qualitative Study.

JMIR Med Inform. 2021-9-17

[3]
Pretrained Transformer Language Models Versus Pretrained Word Embeddings for the Detection of Accurate Health Information on Arabic Social Media: Comparative Study.

JMIR Form Res. 2022-6-29

[4]
Traditional Machine Learning Models and Bidirectional Encoder Representations From Transformer (BERT)-Based Automatic Classification of Tweets About Eating Disorders: Algorithm Development and Validation Study.

JMIR Med Inform. 2022-2-24

[5]
Asian hate speech detection on Twitter during COVID-19.

Front Artif Intell. 2022-8-15

[6]
Comparison of pretrained transformer-based models for influenza and COVID-19 detection using social media text data in Saskatchewan, Canada.

Front Digit Health. 2023-6-28

[7]
Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis.

J Med Internet Res. 2023-10-16

[8]
Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach.

J Med Internet Res. 2022-8-17

[9]
Momentary Depressive Feeling Detection Using X (Formerly Twitter) Data: Contextual Language Approach.

JMIR AI. 2023-11-27

[10]
Development of a COVID-19-Related Anti-Asian Tweet Data Set: Quantitative Study.

JMIR Form Res. 2023-2-28

引用本文的文献

[1]
A Scoping Review of Arabic Natural Language Processing for Mental Health.

Healthcare (Basel). 2025-4-22

[2]
Evaluating of BERT-based and Large Language Mod for Suicide Detection, Prevention, and Risk Assessment: A Systematic Review.

J Med Syst. 2024-12-30

[3]
Mental illness detection through harvesting social media: a comprehensive literature review.

PeerJ Comput Sci. 2024-10-7

[4]
Precise Prostate Cancer Assessment Using IVIM-Based Parametric Estimation of Blood Diffusion from DW-MRI.

Bioengineering (Basel). 2024-6-19

[5]
Special issue on analysis and mining of social media data.

PeerJ Comput Sci. 2024-2-29

[6]
A concentrated machine learning-based classification system for age-related macular degeneration (AMD) diagnosis using fundus images.

Sci Rep. 2024-1-29

[7]
Semi-supervised learning and bidirectional decoding for effective grammar correction in low-resource scenarios.

PeerJ Comput Sci. 2023-10-24

本文引用的文献

[1]
AC-TL-GTO: Alzheimer Automatic Accurate Classification Using Transfer Learning and Artificial Gorilla Troops Optimizer.

Sensors (Basel). 2022-6-2

[2]
Natural language processing applied to mental illness detection: a narrative review.

NPJ Digit Med. 2022-4-8

[3]
An hybrid deep learning approach for depression prediction from user tweets using feature-rich CNN and bi-directional LSTM.

Multimed Tools Appl. 2022

[4]
An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network.

Comput Biol Med. 2022-5

[5]
Detecting and Measuring Depression on Social Media Using a Machine Learning Approach: Systematic Review.

JMIR Ment Health. 2022-3-1

[6]
Detecting Depression Signs on Social Media: A Systematic Literature Review.

Healthcare (Basel). 2022-2-1

[7]
Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media.

World Wide Web. 2022

[8]
Automatic detection of depression symptoms in twitter using multimodal analysis.

J Supercomput. 2022

[9]
A deep learning model for detecting mental illness from user content on social media.

Sci Rep. 2020-7-16

[10]
Detecting depression using a framework combining deep multimodal neural networks with a purpose-built automated evaluation.

Psychol Assess. 2019-5-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索