文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的眼底图像年龄相关性黄斑变性(AMD)诊断集中分类系统。

A concentrated machine learning-based classification system for age-related macular degeneration (AMD) diagnosis using fundus images.

机构信息

Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura, Egypt.

BioImaging Lab, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA.

出版信息

Sci Rep. 2024 Jan 29;14(1):2434. doi: 10.1038/s41598-024-52131-2.


DOI:10.1038/s41598-024-52131-2
PMID:38287062
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10825213/
Abstract

The increase in eye disorders among older individuals has raised concerns, necessitating early detection through regular eye examinations. Age-related macular degeneration (AMD), a prevalent condition in individuals over 45, is a leading cause of vision impairment in the elderly. This paper presents a comprehensive computer-aided diagnosis (CAD) framework to categorize fundus images into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories. This is crucial for early detection and precise diagnosis of age-related macular degeneration (AMD), enabling timely intervention and personalized treatment strategies. We have developed a novel system that extracts both local and global appearance markers from fundus images. These markers are obtained from the entire retina and iso-regions aligned with the optical disc. Applying weighted majority voting on the best classifiers improves performance, resulting in an accuracy of 96.85%, sensitivity of 93.72%, specificity of 97.89%, precision of 93.86%, F1 of 93.72%, ROC of 95.85%, balanced accuracy of 95.81%, and weighted sum of 95.38%. This system not only achieves high accuracy but also provides a detailed assessment of the severity of each retinal region. This approach ensures that the final diagnosis aligns with the physician's understanding of AMD, aiding them in ongoing treatment and follow-up for AMD patients.

摘要

随着年龄的增长,眼部疾病在老年人中的发病率不断上升,这引起了人们的关注,需要通过定期的眼部检查进行早期发现。年龄相关性黄斑变性(AMD)是一种在 45 岁以上人群中普遍存在的疾病,是老年人视力损害的主要原因。本文提出了一种全面的计算机辅助诊断(CAD)框架,用于将眼底图像分为地图样萎缩(GA)、中间型 AMD、正常和湿性 AMD 类别。这对于早期发现和精确诊断年龄相关性黄斑变性(AMD)至关重要,能够及时进行干预并制定个性化的治疗策略。我们开发了一种新的系统,该系统可以从眼底图像中提取局部和全局外观标记。这些标记是从整个视网膜和与视盘对齐的等区域获得的。对最佳分类器进行加权多数投票可以提高性能,从而实现 96.85%的准确率、93.72%的灵敏度、97.89%的特异性、93.86%的精度、93.72%的 F1、95.85%的 ROC、95.81%的平衡准确率和 95.38%的加权总和。该系统不仅具有很高的准确率,而且还可以对每个视网膜区域的严重程度进行详细评估。这种方法可以确保最终诊断与医生对 AMD 的理解一致,有助于他们对 AMD 患者进行持续的治疗和随访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/ac9bd7bff9b3/41598_2024_52131_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/badfe0a28503/41598_2024_52131_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/8688394e18b6/41598_2024_52131_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/d8deed02ae8f/41598_2024_52131_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/7a6b88204f02/41598_2024_52131_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/8d3ab06217b6/41598_2024_52131_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/ac9bd7bff9b3/41598_2024_52131_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/badfe0a28503/41598_2024_52131_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/8688394e18b6/41598_2024_52131_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/d8deed02ae8f/41598_2024_52131_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/7a6b88204f02/41598_2024_52131_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/8d3ab06217b6/41598_2024_52131_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b73/10825213/ac9bd7bff9b3/41598_2024_52131_Fig6_HTML.jpg

相似文献

[1]
A concentrated machine learning-based classification system for age-related macular degeneration (AMD) diagnosis using fundus images.

Sci Rep. 2024-1-29

[2]
Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.

Ophthalmol Retina. 2022-2

[3]
Peripheral Retinal Changes Associated with Age-Related Macular Degeneration in the Age-Related Eye Disease Study 2: Age-Related Eye Disease Study 2 Report Number 12 by the Age-Related Eye Disease Study 2 Optos PEripheral RetinA (OPERA) Study Research Group.

Ophthalmology. 2017-1-12

[4]
Optical coherence tomography for age-related macular degeneration and diabetic macular edema: an evidence-based analysis.

Ont Health Technol Assess Ser. 2009

[5]
Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.

JAMA Ophthalmol. 2017-11-1

[6]
Local configuration pattern features for age-related macular degeneration characterization and classification.

Comput Biol Med. 2015-8

[7]
Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.

Clin Exp Ophthalmol. 2019-7-25

[8]
Automated diagnosis of Age-related Macular Degeneration using greyscale features from digital fundus images.

Comput Biol Med. 2014-10

[9]
Non-invasive testing for early detection of neovascular macular degeneration in unaffected second eyes of older adults: EDNA diagnostic accuracy study.

Health Technol Assess. 2022-1

[10]
Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks.

Br J Ophthalmol. 2021-4

引用本文的文献

[1]
A dual-stream deep learning framework for skin cancer classification using histopathological-inherited and vision-based feature extraction.

Sci Rep. 2025-9-2

[2]
AttResAMD: An Attention-Driven Deep Learning Framework for Expert-Level Automated Classification of Age-Related Macular Degeneration from Fundus Photography.

Interdiscip Sci. 2025-8-30

[3]
ODDM: Integration of SMOTE Tomek with Deep Learning on Imbalanced Color Fundus Images for Classification of Several Ocular Diseases.

J Imaging. 2025-8-18

[4]
Serum RNA Profile Reflects Fluid Status and Atrophic Retinal Changes in Neovascular Age-Related Macular Degeneration.

Int J Mol Sci. 2025-5-19

[5]
Reinforcement-based leveraging transfer learning for multiclass optical coherence tomography images classification.

Sci Rep. 2025-2-20

[6]
Discriminative, generative artificial intelligence, and foundation models in retina imaging.

Taiwan J Ophthalmol. 2024-11-28

[7]
Recent advances in the application of artificial intelligence in age-related macular degeneration.

BMJ Open Ophthalmol. 2024-11-13

[8]
Artificial intelligence for diagnosing exudative age-related macular degeneration.

Cochrane Database Syst Rev. 2024-10-17

[9]
Empowering Portable Age-Related Macular Degeneration Screening: Evaluation of a Deep Learning Algorithm for a Smartphone Fundus Camera.

BMJ Open. 2024-9-5

[10]
A Comprehensive Review of AI Diagnosis Strategies for Age-Related Macular Degeneration (AMD).

Bioengineering (Basel). 2024-7-13

本文引用的文献

[1]
Impact of Imaging Biomarkers and AI on Breast Cancer Management: A Brief Review.

Cancers (Basel). 2023-10-30

[2]
Prediction of Wilms' Tumor Susceptibility to Preoperative Chemotherapy Using a Novel Computer-Aided Prediction System.

Diagnostics (Basel). 2023-1-29

[3]
An Analysis of Burnout among Female Nurse Educators in Saudi Arabia Using K-Means Clustering.

Eur J Investig Health Psychol Educ. 2022-12-30

[4]
Predicting Age-related Macular Degeneration Progression with Longitudinal Fundus Images Using Deep Learning.

Mach Learn Med Imaging. 2022-9

[5]
Computational intelligence in eye disease diagnosis: a comparative study.

Med Biol Eng Comput. 2023-3

[6]
Detection of Diabetic Retinopathy Using Extracted 3D Features from OCT Images.

Sensors (Basel). 2022-10-15

[7]
State of the Art: Lung Cancer Staging Using Updated Imaging Modalities.

Bioengineering (Basel). 2022-9-22

[8]
Classification of breast cancer using a manta-ray foraging optimized transfer learning framework.

PeerJ Comput Sci. 2022-8-8

[9]
An optimized deep learning approach for suicide detection through Arabic tweets.

PeerJ Comput Sci. 2022-8-23

[10]
A generic optimization and learning framework for Parkinson disease via speech and handwritten records.

J Ambient Intell Humaniz Comput. 2022-8-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索