Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology, Mansoura, Egypt.
BioImaging Lab, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, USA.
Sci Rep. 2024 Jan 29;14(1):2434. doi: 10.1038/s41598-024-52131-2.
The increase in eye disorders among older individuals has raised concerns, necessitating early detection through regular eye examinations. Age-related macular degeneration (AMD), a prevalent condition in individuals over 45, is a leading cause of vision impairment in the elderly. This paper presents a comprehensive computer-aided diagnosis (CAD) framework to categorize fundus images into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories. This is crucial for early detection and precise diagnosis of age-related macular degeneration (AMD), enabling timely intervention and personalized treatment strategies. We have developed a novel system that extracts both local and global appearance markers from fundus images. These markers are obtained from the entire retina and iso-regions aligned with the optical disc. Applying weighted majority voting on the best classifiers improves performance, resulting in an accuracy of 96.85%, sensitivity of 93.72%, specificity of 97.89%, precision of 93.86%, F1 of 93.72%, ROC of 95.85%, balanced accuracy of 95.81%, and weighted sum of 95.38%. This system not only achieves high accuracy but also provides a detailed assessment of the severity of each retinal region. This approach ensures that the final diagnosis aligns with the physician's understanding of AMD, aiding them in ongoing treatment and follow-up for AMD patients.
随着年龄的增长,眼部疾病在老年人中的发病率不断上升,这引起了人们的关注,需要通过定期的眼部检查进行早期发现。年龄相关性黄斑变性(AMD)是一种在 45 岁以上人群中普遍存在的疾病,是老年人视力损害的主要原因。本文提出了一种全面的计算机辅助诊断(CAD)框架,用于将眼底图像分为地图样萎缩(GA)、中间型 AMD、正常和湿性 AMD 类别。这对于早期发现和精确诊断年龄相关性黄斑变性(AMD)至关重要,能够及时进行干预并制定个性化的治疗策略。我们开发了一种新的系统,该系统可以从眼底图像中提取局部和全局外观标记。这些标记是从整个视网膜和与视盘对齐的等区域获得的。对最佳分类器进行加权多数投票可以提高性能,从而实现 96.85%的准确率、93.72%的灵敏度、97.89%的特异性、93.86%的精度、93.72%的 F1、95.85%的 ROC、95.81%的平衡准确率和 95.38%的加权总和。该系统不仅具有很高的准确率,而且还可以对每个视网膜区域的严重程度进行详细评估。这种方法可以确保最终诊断与医生对 AMD 的理解一致,有助于他们对 AMD 患者进行持续的治疗和随访。
Ont Health Technol Assess Ser. 2009
Taiwan J Ophthalmol. 2024-11-28
BMJ Open Ophthalmol. 2024-11-13
Cochrane Database Syst Rev. 2024-10-17
Bioengineering (Basel). 2024-7-13
Cancers (Basel). 2023-10-30
Diagnostics (Basel). 2023-1-29
Eur J Investig Health Psychol Educ. 2022-12-30
Mach Learn Med Imaging. 2022-9
Med Biol Eng Comput. 2023-3
Sensors (Basel). 2022-10-15
Bioengineering (Basel). 2022-9-22
PeerJ Comput Sci. 2022-8-8
PeerJ Comput Sci. 2022-8-23
J Ambient Intell Humaniz Comput. 2022-8-26