Gupta Anshika, Chauhan Shweta Singh, Gaur Anamika Singh, Parthasarathi Ramakrishnan
Computational Toxicology Facility, Toxicoinformatics Research Group, CSIR-Indian Institute of Toxicology Research, Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India.
Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201002 India.
Struct Chem. 2022;33(6):2179-2193. doi: 10.1007/s11224-022-02049-0. Epub 2022 Sep 3.
COVID-19 disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was declared a global pandemic by the World Health Organization (WHO) in March 2020. Since then, the SARS-CoV-2 virus has impacted millions of lives worldwide. Various preclinical and clinical trials on the treatment of COVID-19 disease have revealed that the drugs that work in combination are more likely to reduce reinfection and multi-organ failure. Considering the combination drug therapy, herein, we performed a systematic computational study starting with the formation of sixty-two combinations of drugs and phytochemicals with 2-deoxy-D-glucose (2-DG). The top nineteen combinations resulting from Drug-Drug Interaction (DDI) analysis were selected for individual and multiple-ligand-simultaneous docking (MLSD) study with a host target Serine Protease (TMPRSS2; PDB ID: 7MEQ) and two viral targets, Main Protease (3CLpro; PDB ID: 6LU7) and Uridylate-Specific Endoribonuclease (NSP15; PDB ID: 6VWW). We found that the resulting drugs and phytochemicals in combination with 2-DG shows better binding than the individual compounds. We performed the re-docking of the top three drug combinations by utilizing the polypharmacology approach to validate the binding patterns of drug combinations with multiple targets for verifying the best drug combinatorial output obtained by blind docking. A strong binding affinity pattern was observed for 2-DG + Ruxolitinib (NIH-recommended drug), 2-DG + Telmisartan (phase 4 clinical trial drug), and 2-DG + Punicalagin (phytochemical) for all the selected targets. Additionally, we conducted multiple-ligand-simultaneous molecular dynamics (MLS-MD) simulations on the selected targets with the 2-DG + Ruxolitinib combination. The MLS-MD analysis of the drug combinations shows that stabilization of the interaction complexes could have significant inhibition potential against SARS CoV-2. This study provides an insight into developing drug combinations utilizing integrated computational approaches to uncover their potential in synergistic drug therapy.
The online version contains supplementary material available at 10.1007/s11224-022-02049-0.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的2019冠状病毒病于2020年3月被世界卫生组织(WHO)宣布为全球大流行。从那时起,SARS-CoV-2病毒已影响全球数百万人的生命。各种关于2019冠状病毒病治疗的临床前和临床试验表明,联合使用的药物更有可能减少再次感染和多器官衰竭。考虑到联合药物治疗,在此,我们进行了一项系统的计算研究,首先形成了62种药物和植物化学物质与2-脱氧-D-葡萄糖(2-DG)的组合。通过药物-药物相互作用(DDI)分析得出的前19种组合被选用于与宿主靶点丝氨酸蛋白酶(TMPRSS2;PDB ID:7MEQ)以及两个病毒靶点,即主要蛋白酶(3CLpro;PDB ID:6LU7)和尿苷酸特异性核糖核酸内切酶(NSP15;PDB ID:6VWW)进行单独和多配体同时对接(MLSD)研究。我们发现,与2-DG联合使用的所得药物和植物化学物质显示出比单个化合物更好的结合。我们利用多药理学方法对前三种药物组合进行了重新对接,以验证药物组合与多个靶点的结合模式,从而验证通过盲目对接获得的最佳药物组合输出。对于所有选定的靶点,观察到2-DG + 鲁索替尼(美国国立卫生研究院推荐药物)、2-DG + 替米沙坦(4期临床试验药物)和2-DG + 石榴皮素(植物化学物质)具有很强的结合亲和力模式。此外,我们对选定的靶点与2-DG + 鲁索替尼组合进行了多配体同时分子动力学(MLS-MD)模拟。药物组合的MLS-MD分析表明,相互作用复合物的稳定可能对SARS-CoV-2具有显著的抑制潜力。本研究为利用综合计算方法开发药物组合以揭示其在协同药物治疗中的潜力提供了见解。
在线版本包含可在10.1007/s11224-022-02049-0获取的补充材料。