Suppr超能文献

基于残差网络和注意力机制的白细胞图像分割。

WBC Image Segmentation Based on Residual Networks and Attentional Mechanisms.

机构信息

Anqing Normal University, College of Computer and Information, Anqing 246133, Anhui, China.

The University Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Normal University, China, Anqing 246133, Anhui, China.

出版信息

Comput Intell Neurosci. 2022 Aug 31;2022:1610658. doi: 10.1155/2022/1610658. eCollection 2022.

Abstract

White blood cell (WBC) morphology examination plays a crucial role in diagnosing many diseases. One of the most important steps in WBC morphology analysis is WBC image segmentation, which remains a challenging task. To address the problems of low segmentation accuracy caused by color similarity, uneven brightness, and irregular boundary between WBC regions and the background, a WBC image segmentation network based on U-Net combining residual networks and attention mechanism was proposed. Firstly, the ResNet50 residual block is used to form the main unit of the encoder structure, which helps to overcome the overfitting problem caused by a small number of training samples by improving the network's feature extraction capacity and loading the pretraining weight. Secondly, the SE module is added to the decoder structure to make the model pay more attention to useful features while suppressing useless ones. In addition, atrous convolution is utilized to recover full-resolution feature maps in the decoder structure to increase the receptive field of the convolution layer. Finally, network parameters are optimized using the Adam optimization technique in conjunction with the binary cross-entropy loss function. Experimental results on BCISC and LISC datasets show that the proposed approach has higher segmentation accuracy and robustness.

摘要

白细胞(WBC)形态学检查在诊断许多疾病中起着至关重要的作用。WBC 形态分析中最重要的步骤之一是 WBC 图像分割,这仍然是一项具有挑战性的任务。针对 WBC 区域与背景之间颜色相似、亮度不均匀和边界不规则导致的分割精度低的问题,提出了一种基于 U-Net 结合残差网络和注意力机制的 WBC 图像分割网络。首先,使用 ResNet50 残差块形成编码器结构的主要单元,通过提高网络的特征提取能力和加载预训练权重,有助于克服由于训练样本数量少而导致的过拟合问题。其次,在解码器结构中添加 SE 模块,使模型在抑制无用特征的同时,更加关注有用特征。此外,在解码器结构中使用空洞卷积来恢复全分辨率特征图,以增加卷积层的感受野。最后,使用 Adam 优化技术和二值交叉熵损失函数优化网络参数。在 BCISC 和 LISC 数据集上的实验结果表明,所提出的方法具有更高的分割精度和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ac4/9452935/189bef90ee93/CIN2022-1610658.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验